
Node anomaly detection for homogeneous distributed environments

Jian Xu a, Yexi Jiang b, Chunqiu Zeng b, Tao Li b,c,⇑
a School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
b School of Computing and Information Sciences, Florida International University, Miami, FL, USA
c School of Computer Science & Technology, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, China

a r t i c l e i n f o

Article history:
Available online 5 May 2015

Keywords:
Anomaly detection
Multiple data streams
Contextual anomaly
Collective anomaly

a b s t r a c t

Identifying the anomalies is a critical task to maintain the uptime of the monitored distributed systems.
For this reason, the trace data collected from real time monitors are often provided in form of streams for
anomaly detection. Due to the dramatic increase of the scale of modern distributed systems, it is chal-
lenging to effectively and efficiently discover the anomalies from a voluminous amount of noisy and
high-dimensional data streams. Moreover, the evolving of the system infrastructures brings new anomaly
types that cannot be generalized as existing ones, making the existing anomaly detection solutions
unavailable.

To address these issues, in this paper, we introduce a new type of anomalies called contextual collective
anomaly. Then we propose a framework to discover this type of anomaly over a collection of data streams
in real time. A primary advantage of this solution is that it can accurately identify the anomalies by taking
both the contextual information and the historical information of a data stream into consideration. Also,
the proposed framework is designed in a way with a low computational cost, and is able to handle
large-scale data streams. To demonstrate the effectiveness and efficiency of our proposed framework,
we empirically validate it on a real world cluster.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A homogeneous distributed environment generally consists of
multiple computing nodes with the same hardware configuration,
software environment and similar workloads. A typical example of
the homogeneous distributed environment is the load-balanced
system, which is widely used at the backend by the popular
large-scale web sites like Amazon, Google and Facebook. In such
a distributed environment, the computing nodes in a distributed
system would behave similar to each other in the ideal situation
(no anomaly and no occasional fluctuation). In such a situation,
the observations (in terms of monitored metrics) of the nodes
should be close to each other at any time. In practice, node anom-
aly might be caused by a variety of reasons, such as software aging,
resource contention, and hardware failure, making the affected
nodes behave differently from other nodes (Grottke & Trivedi,
2007). Overtime, a system is becoming more instable and it would
fail to function properly due to the existence of anomaly nodes.
Although the health-related data are collected across the system
for troubleshooting, unfortunately how to effectively and

efficiently identify anomalies and their root causes in the data
has never been as straightforward as one would expect.

Traditionally, domain experts are responsible for examining the
data with their experience and expertise. Such a manual process is
time-consuming, error-prone, and even worse, not scalable. Due to
the data scale and complexity, event the domain experts cannot
fully identify the true anomalies and may also miss some deeply
hidden anomalies. Moreover, as the behaviors of the distributed
environment are likely changing over time, such temporal dynam-
ics is difficult to be captured by the domain experts, as they may
not be able to refresh their knowledge quick enough.

As the size and complexity of computer systems continue to
grow, the difficulty for automated anomaly identification increases
dramatically and it have far beyond the processing capability of the
domain experts. The traditional expert systems that encoded the
rules of the domain experts can only partially addressed the data
scale problem. However, they cannot solve the complexity prob-
lem. This is because a distributed environment is dynamic. It is
not likely such changing behaviors can be well captured by the sta-
tic rules. Overtime, the deployed expert system based anomaly
detection would gradually be outdated, as the rate of false positive
and false negative would increase.

There are quite a few data processing and anomaly analysis
infrastructures to enable automated anomaly identification.

http://dx.doi.org/10.1016/j.eswa.2015.04.037
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: dolphin.xu@njust.edu.cn (J. Xu), yjian004@cs.fiu.edu (Y. Jiang),

czeng001@cs.fiu.edu (C. Zeng), taoli@cs.fiu.edu (T. Li).

Expert Systems with Applications 42 (2015) 7012–7025

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.04.037&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.04.037
mailto:dolphin.xu@njust.edu.cn
mailto:yjian004@cs.fiu.edu
mailto:czeng001@cs.fiu.edu
mailto:taoli@cs.fiu.edu
http://dx.doi.org/10.1016/j.eswa.2015.04.037
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


However, these existing data processing infrastructures are
designed based on inherent non-stream programming paradigm
such as Map/Reduce (Dean & Ghemawat, 2008), Bulk
Synchronous Parallel (BSP) (Valiant, 1990), and their variations.
To reduce the processing delay, these applications have gradually
migrated to stream processing engines (Arasu et al.,
2003;Chandrasekaran et al., 2003). As the infrastructures have
been changed, anomalies in these applications are required to be
identified online across multiple data streams. The new data char-
acteristics and analysis requirements make existing anomaly
detection solutions no longer suitable.

To address the problem, in this paper, we present a real time
mechanism for node anomaly detection by taking both the node
context information and the node historical information into con-
sideration from multiple data streams.

1.1. A motivating example

Fig. 1 illustrates the scenario of monitoring a 6-node computer
cluster, where the x-axis denotes the time and the y-axis denotes
the CPU utilization. The cluster has been monitored during time
[0, t6]. At time t2, a computing task has been submitted to the clus-
ter and the cluster finishes this task at time t4. As shown in Fig. 1,
two nodes (marked in dashed line) behave differently from the
majority during some specific time periods. Node 1 has a high
CPU utilization during ½t1; t2� and a low CPU utilization during
½t3; t4� while node 2 has a medium CPU utilization all the time.
These two nodes with their associated abnormal periods are
regarded as anomalies. Besides these two obvious anomalies, there
is a slight delay on node 3 due to the network delay and a transient
fluctuation on node 4 due to some random factors. However, they
are normal phenomena in distributed systems and are not
regarded as anomalies.

A quick solution for stream based anomaly detection is to lever-
age the techniques of complex event processing (CEP) [3,4] by
expressing the anomalies detection rules with corresponding con-
tinuous query statements. This rule-based detection method can
be applied to the scenarios where the anomaly can be clearly
defined. Besides using CEP, several stream based anomaly detec-
tion algorithms have also been proposed. They either focus on
identifying the contextual anomaly over a collection of stable
streams (Bu, Chen, Fu, & Liu, 2009) or the collective anomaly from
one stream (Anguilli & Fassetti, 2007; Pokrajac, Lazarevic, &
Latecki, 2007). These existing methods are useful in many applica-
tions but they still cannot identify certain types of anomalies.

Fig. 2 plots the ground truth as well as all the anomalies identi-
fied by existing methods including the CEP query with three differ-
ent rules (Rule-CQ1, 2, and 3), the collective based anomaly
detection (Breunig, Kriegel, Ng, & Sander, 2000), and contextual
based anomaly detection (Chandola, Banerjee, & Kumar, 2009).

To detect the anomalies via CEP query, the idea is to capture the
events when the CPU utilizations of nodes are too high or too low.
An example query following the syntax of Agrawal, Diao,
Gyllstrom, and Immerman (2008) can be written as follows:

PATTERN SEQ(Observation o[])
WHERE avg(o[].cpu) oper threshold (ANDjOR avg(o[].cpu) oper
threshold)⁄

WITHIN {length of sliding window}

where the selection condition in WHERE clause is the conjunction
of one or more boolean expressions, oper is one of f >;<;<>, ==g,
and threshold can be replaced by any valid expression. However,
CEP queries are unable to correctly identify the anomalies in
Fig. 1 no matter how the selection conditions are specified. For
instance, setting the condition as avg(o[].cpu) > {threshold} would
miss the anomalies during ½t3; t4� (Rule-CQ1); setting the condition
as avg(o[].cpu) < {threshold} would miss the anomalies during
½t1; t2� (Rule-CQ2); and combining the two above expressions with
OR still does not work (Rule-CQ3). Besides deciding the selection
condition, how to rule out the situations of slight delays and tran-
sient fluctuations, and how to set the length of the sliding windows
are all difficult problems when writing the continuous queries. The
main reason is that the continuous query statement is not suitable
to capture the contextual information where the ‘‘normal’’ behav-
iors are also dynamic (the utilizations of normal nodes also change
over time in Fig. 1).

Compared with CEP based methods, contextual anomaly detec-
tion methods (such as Gupta, Sharma, Chen, & Jiang, 2013; Jiang,
Chen, & Yoshihira, 2006) achieve a better accuracy as they utilize
the contextual information of all the streams. However, one limita-
tion of contextual based methods is that they do not leverage the
temporal information of streams and are not suitable for anomaly
detection in dynamic environments.

Therefore, these methods would wrongly identify the slightly
delayed and fluctuated nodes as anomalies. For the given example,
collective anomaly detection methods do not work well neither.
This is because these methods would identify the anomaly of each
stream based on its normal behaviors. Once the current behavior
of a stream is different from its normal behaviors (identified based
on historical data), it is considered as abnormal. In the example,
when the cluster works on the task during time period ½t3; t4�, all
the working nodes would be identified as abnormal due to the sud-
den burst.

1.2. Contributions

In this paper, we propose an efficient solution to identify this
special type of anomaly in the above example, named contextual
collective anomaly. Contextual collective anomalies bear the char-
acteristics of both contextual anomalies and collective anomalies.

Fig. 1. CPU utilization of a computing cluster.

J. Xu et al. / Expert Systems with Applications 42 (2015) 7012–7025 7013



Download English Version:

https://daneshyari.com/en/article/382069

Download Persian Version:

https://daneshyari.com/article/382069

Daneshyari.com

https://daneshyari.com/en/article/382069
https://daneshyari.com/article/382069
https://daneshyari.com

