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a b s t r a c t

In this paper we present a new mean–variance customer portfolio optimization algorithm for a class of
ergodic finite controllable Markov chains. In order to have a realistic result we propose an iterated two-
step method for solving the given portfolio constraint problem: (a) the first step is designed to optimize
the nonlinear problem using a quadratic programming method for finding the long run fraction of the
time that the system is in a given state (segment) and an action (promotion) is chosen and, (b) the second
step is designed to find the optimal number of customers using a Lagrange programming approach. Both
steps are based on the c-variable method to make the problem computationally tractable and obtain the
optimal solution for the customer portfolio. The Tikhonov’s regularization method is used to ensure the
convergence of the objective-function to a single optimal portfolio solution. We prove that the proposed
method converges by the Weierstrass theorem: the objective function of the mean–variance customer
portfolio problem decreases, it is monotonically non-decreasing and bounded from above. In addition,
for solving the customer portfolio problem we consider both, a constant risk-aversion restriction and
budget limitations. The constraints imposed by the system produce mixed strategies. Effectiveness of
the proposed method is successfully demonstrated theoretically and by a simulated experiment related
with credit-card and customer-credit limits approach for a bank.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Brief review

Mean–variance analysis for optimal asset allocation is one of
the classical results of financial economics (Markowitz, 1952).
However, it is well-known by financial managers that firms often
perform the portfolio selection in a suboptimal manner. Then,
the mix together of huge investment of money and inefficient
management of the budget motivates the interest in better under-
standing of optimal asset allocation. We are focus on optimal
asset allocation from the monopoly point of view considering the
analysis of customer portfolios selection from a risk management
perspective (Ryals, 2003) (we leave the individual customer
relationships (Reinartz & Kumar, 2000) point of view of the optimal
customer portfolio out of the scope of this paper).

The estimation of the risk is a fundamental topic for (risk-
averse) financial managements. Risk management based on diver-
sified portfolio makes it possible to reduce the risk of suffering a
large loss and, at the same time, securing a certain level of prof-
itability (Cornuejols & Tutuncu, 2007). Portfolio selection accord-
ingly plays an important role in financial decision making. The
risk contribution of each customer to the customer portfolio is
taken into account in a customer portfolio valuation applying the
Markowitz’s theory portfolio selection (Markowitz, 1952). The goal
of the customer portfolio is to determine the optimal number of
customer types from a value-based risk management perspective.
In order to better predict individual customer behavior customers
are grouped into segments (Ho, Thomas, Pomroy, & Scherer, 2004).
These segments are created by trying to group together customers
having similar behavior (Wedel & Kamakura, 2000). Finally, the
customer portfolio determines how these segments will be
addressed.

In this paper, we consider the single-period budgeted campaign
optimization problem (Dar, Mansour, Mirrokni, Muthukrishnan, &
Nadav, 2009; Feldman, Muthukrishnan, Pal, & Stein, 2007;
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Muthukrishnan, Pal, & Svitkina, 2007), where the goal is to find the
mixed strategies related to the portfolio optimization in order to
distribute the budget and to maximize the investment in each
applied promotion. The objective function has the form

EðXÞ � n
2

VarðXÞ ð1Þ

where n is a pre-specified risk-aversion parameter. In the
Markowitz mean–variance approach the functional (1) is replaced
by two different goals: maximize the expected return and to mini-
mize the variance. The intention of this equivalent problem is to
focus on the conflicting criteria of return and risk: (a) the return
is calculated by computing the expected value of the portfolio
return random variable and, (b) the risk is calculated considering
the square root of the variance of the portfolio return random vari-
able. It is important to note that the variance generates the same
results as the standard deviation, however, they are easier to obtain
by computing the means of variance. Each portfolio have a criterion
vector describing its risk-return attributes then, the nondominated
frontier is the graph with nonnegatively sloped and concave curve
containing all portfolio criterion vectors that are nondominated in
the standard deviation versus the expected return space.
Understanding the standard deviation as risk, the nondominated
frontier shows how, if low risk is expected then, low rate of return
is obtained, and how, if high rate of return obtained then, high risk
is estimated. As a result, a portfolio’s criterion vector optimize the
utility function if it is on the frontier.

1.2. Related work

Under the assumption of a quadratic utility function the opti-
mal portfolio lies on the mean–variance Pareto front or the
Efficient Frontier. A portfolio is optimal if no other possible portfo-
lio is able to improve the optimization criteria. Several methods
has been studied in depth in optimization problem theory
(Aouni, Colapinto, & La Torre, 2014; Athan & Papalambros, 1996;
Bana e Costa & Soares, 2004; Ben Abdelaziz, Aouni, & El-Fayedh,
2007; Best & Hlouskova, 2000; Charnes, Clower, & Kortanek,
1967; Charnes & Cooper, 1977; Das & Dennis, 1998; Deng, Li, &
Wang, 2005; Gram & Schyns, 2003; Hirschberger, Qi, & Steuer,
2010; Huang, 2007; Kolm, Ttnc, & Fabozzi, 2014; Korhonen & Yu,
1998; Messac, 1996; Owadally & Landsman, 2013; Qi,
Hirschberger, & Steuer, 2009; Stein, Branke, & Schmeck, 2008;
Steuer, Qi, & Hirschberger, 2011). Surveys can be found in Marler
and Arora (2004), Metaxiotis and Liagkouras (2012) and Rifki and
Ono (2012). Moreover, different approaches to tackle portfolio
selection have been increasingly applied over the past years
(Gutirrez & Magnusson, 2014; Martinsuo, 2013): decision support
system (Hu, Wang, Fetch, & Bidanda, 2008; Pendharkar, 2014),
fuzzy set theory and multi-criteria (Wei & Chang, 2011; Khalili-
Damghani, Sadi-Nezhad, Hosseinzadeh Lotfi, & Tavana, 2013;
Khalili-Damghani, 2014; Tavana, Khalili-Damghani, & Abtahi,
2013; Fernandez, Lopez, Mazcorro, Olmedo, & Coello, 2013), R&D
portfolio selection (Abbassia, Ashrafi, & Tashnizi, 2014;
Bhattacharyya, Kumar, & Kar, 2011). Recent related researches
can be found in Aragons-Beltrn, Chaparro-Gonzlez, Pastor-
Ferrando, and Pla-Rubio (2014), Dutra, Ribeiro, and Carvalho
(2014), Altuntas and Dereli (2015), Liagkouras and Metaxiotis
(2015) and Silva, Neves, and Horta (2015).

Most of these algorithms returns either a single solution or set
of all efficient portfolios on the Pareto-optimal front, which is a
continuous or defined on a sequence of intervals entity (for a dis-
crete parametrization solution see, for example, Qi et al., 2009).
Despite the fact that one or only a few solutions may be imple-
mented, it is interesting to look for solutions well-spread on the
front. However, to obtain a flexible solution for choosing any point

that lies on the Pareto-optimal front, it is needed a continuous
parametrization of the front. Therefore, well-spaced points can
be shaped on the front to support the process of decision making.
A few algorithms attempt to give a continuous representation of
the Pareto-optimal front as the result of the optimization process
to convex portfolio problems (Best & Hlouskova, 2000;
Hirschberger et al., 2010; Korhonen & Yu, 1998; Niedermayer &
Niedermayer, 2010; Stein et al., 2008; Steuer et al., 2011). The last
four proposed continuous bi-objective and tri-objective problems
using parametric quadratic programming.

1.3. Main questions

We noted that many bank mistakes in the most recent years
took place for the reason that the managers did not know that
portfolio models did not exist or the portfolio models put into
operation were ill-behaved. Then, they are forced to play against
unnecessary risky positions. The absence of portfolio models or
ill-behaved portfolio models may lead managers to make credit-
card decision on credit limits that can be catastrophic for the bank.
Then, many question arises if a customer portfolio model is put
into practice in an institution: (a) does the bank have the required
quality information needed to determine the parameters of the
customer portfolio? e.g. credit migration (transition matrices),
which characterize past changes in credit quality of borrowers play
a fundamental role in the Basel Capital Accord (Bank For
International Settlements, 2005), where capital requirements are
driven in part by ratings migration; (b) does the customer portfolio
makes absolute financial sense? i.e. the customer portfolio model
uses hypothetical parameters that may lead to incentive distor-
tions for the assets allocation; (c) what are the problems not took
into account related to the customer portfolio model? (d) if the
behavior of the environment changes, what are the penalties of
the bank’s credit card decisions according to the customer portfo-
lio? i.e. factors and forces that affect a bank’s ability to build and
maintain successful relationships with customers: interest rates
changes, legal changes, additional regulatory requirements, new
competitors behavior, etc.

1.4. Main results

In this work, we present a new algorithm for solving the mean–
variance customer portfolio optimization problem using an ergodic
finite controllable Markov chains model (Poznyak, Najim, &
Gomez-Ramirez, 2000) (for representing the customer behavior
and an optimization method for budget allocation). The for-
mulation of the problem is considered as a nonlinear programming
problem based on an objective function that is supposed to be
(non-obligatory strictly) convex. We introduce the Tikonov’s regu-
larization (TR) to ensure the convergence of the objective-function
to a single optimal customer portfolio. TR is one of the most popu-
lar approaches to solve discrete ill-posed problems represented in
the form of a non-obligatory strict convex function. As a result, our
method construct the nondominated frontier containing only all
contenders for optimality. In order to have a realistic result we pro-
pose an iterated quadratic/Lagrange programming approach to
obtain the optimal solution for the mean–variance customer port-
folio. The proposed method is an iterative two-step procedure for
solving the given quadratic problem (1): the first step is designed
to optimize the nonlinear problem using a quadratic programming
method for finding the long run fraction of the time that the sys-
tem is in a given state (segment) and an action (promotion) is cho-
sen (represented by the variable c) and, the second step is designed
for finding the optimal number of customers using a Lagrange pro-
gramming approach. At each iteration of the procedure the objec-
tive function of the mean–variance customer portfolio problem (1)
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