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In this paper, a new fast incremental fuzzy partitioning algorithm able to find either a fuzzy globally

optimal partition or a fuzzy locally optimal partition of the set A ⊂ R
n close to the global one is pro-

posed. This is the main impact of the paper, which could have an important role in applied research.

Since fuzzy k-optimal partitions with k = 2, 3, . . . , kmax clusters are determined successively in the algo-

rithm, it is possible to calculate corresponding validity indices for every obtained partition. The number

kmax is defined in such a way that the objective function value of optimal partition with kmax clusters is

relatively very close to the objective function value of optimal partition with (kmax−1) clusters. Before

clustering, the data are normalized and afterwards several validity indices are applied to partitions of

the normalized data. Very simple relationships between used validity indices on normalized and original

data are given as well. Hence, the proposed algorithm is able to find optimal partitions with the most

appropriate number of clusters. The algorithm is tested on numerous synthetic data sets and several real

data sets from the UCI data repository.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering of a data set into conceptually meaningful groups,

yielding a partition of that data set, is a problem widely encoun-

tered in different research areas. In this paper, we consider the

problem of searching for a Fuzzy Globally Optimal Partition (FGOP)

with the most appropriate number of clusters. Fuzzy clustering

serves as an important tool for solving specific problems in dif-

ferent areas of applied research. Let us mention only image and

signal processing, medical diagnosis, tomography, neural networks,

chemistry, biology, astronomy, speech recognition, environmental

sciences, etc. (Bandyopadhyay & Saha, 2013; Bezdek, Keller, Krisna-

puram, & Pal, 2005; Theodoridis & Koutroumbas, 2009).

The best known method for solving this problem (in some par-

ticular sense) uses the well known fuzzy c-means (FCM). It gives

a locally optimal partition, whose closeness to the FGOP strongly

depends on an initial approximation. The choice of initial centers

impacts directly its convergence speed, as well as the quality of

partitions found. Stetco, Zeng, and Keane (2015) presented a new

approach for choosing the initial centers for FCM, with the aim of

increasing the convergence speed. It is based on the technique pro-

posed by Arthur and Vassilvitskii (2007). The first center is picked
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uniformly at random from the data set, while the others are picked

probabilistically, favoring data points more distant from the already

selected ones. A drawback of the presented approach is that it in-

troduces an additional user parameter which controls the proba-

bilities assigned to data points.

Direct applications of well-known global optimization methods

are not acceptable for searching FGOP (Grbić, Nyarko, & Scitovski,

2013; Paulavičius & Žilinskas, 2014; Pintér, 1996) because of the

large number of independent variables in objective function (coor-

dinates of cluster centers) and large number of stationary points of

objective function, but different hybrid approaches were proposed

that combine global optimization methods with FCM, thus, typi-

cally, yielding better performance (Tvrdik & Křivý, 2015). Most of-

ten bio-inspired optimization algorithms are used. Silva Filho, Pi-

mentel, Souza, and . Oliveira (2015) presented a hybrid approach

that is based on the one proposed by Izakian and Abraham (2011).

Both combine particle swarm optimization and FCM, where an ini-

tial search performed by particle swarm optimization is followed

by FCM in order to improve those partitions. Another hybrid ap-

proach for the localization of retinal blood vessels, combining an

artificial bee colony optimization algorithm and pattern search,

was proposed in Hassanien, Emary, and Hossam (2015). After the

cluster centers are obtained by artificial bee colony optimization,

the pattern search algorithm is utilized in order to refine them fur-

thermore. Another example can be found in Tang, Zhang, Wang,

Wang, and Liu (2014), where the authors proposed a hybrid for

the estimation of missing traffic data, which combines FCM and a
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genetic algorithm. The FCM algorithm is used for generating an ini-

tial data model which is subsequently refined by the genetic al-

gorithm. The refinement is performed as long as the deviation of

the model output on known data is not less than a user defined

threshold. A number of hybrid approaches have also been proposed

for hard clustering. For example, Tvrdik and Křivý (2015) proposed

a hybrid of differential evolution and k-means.

All the approaches mentioned so far have one significant draw-

back in common. Namely, all assume that the number of clusters

inherent to a data set is known a priori. Thus, their applicability is

limited to such cases. Nonetheless, different approaches attempt-

ing to solve that problem can be found in the literature. Kashan,

Rezaee, and Karimiyan (2013) proposed an approach for automatic

fuzzy clustering adapting the grouping evolution strategies, which

was originally proposed for hard clustering. Another approach for

automatic fuzzy clustering has been proposed by Peng, Wang, Shi,

Riscos-Nunez, and Perez-Jimenez (2015). It is based on a tissue-

like P system and uses, with regard to the previously mentioned

approach, fixed size objects for representing cluster centers.

In our paper, a new fast incremental fuzzy partitioning algo-

rithm able to find either a FGOP or a fuzzy locally optimal parti-

tion close to the global one is proposed. The algorithm successively

searches for optimal partitions with k = 2, 3, . . . clusters until the

relative difference in the objective function values becomes smaller

than some small ε > 0. In each iteration the FCM and DIRECT
algorithm for global optimization are combined. The drawback of

the proposed algorithm lies in the fact that we cannot be certain

if a FGOP or only a partition close to a FGOP was found. Numer-

ous experiments conducted on synthetic data sets and on real data

sets from the UCI data repository show that the algorithm gives a

FGOP or a partition very close to a FGOP. Furthermore, the algo-

rithm is suitable for applying different validity indices in order to

determine the most appropriate number of clusters in a partition.

The paper is organized as follows. In the next section, the prob-

lem statement is given. In Section 3, the problem for searching for

a fuzzy locally and globally optimal partition is described and a

new efficient incremental algorithm for searching for a globally op-

timal partition is proposed. In Section 4, the proposed algorithm is

tested on several real data sets. Finally, some conclusions are given

in Section 5.

2. Problem statement

Given is a data points set A = {ai = (ai
1
, . . . , ai

n) : i = 1, . . . , m} ⊂
[α,β] ⊂ R

n, where α = (α1, . . . , αn)T , β = (β1, . . . , βn)T ∈ R
n and

[α,β] = {x ∈ R
n : αi ≤ xi ≤ βi}.

If components ai
1
, . . . , ai

n of the data point ai ∈ A are not of

equal range, i.e. if components of the vector α, resp. vector β , are

mutually significantly different, they should be normalized first.

This means that set A should be transformed into set B = {T (ai) :

ai ∈ A} ⊂ [0, 1]n by the mapping T : [α,β] → [0, 1]n, where

T (x) = D(x − α), D = diag
(

1
β1−α1

, . . . , 1
βn−αn

)
. (1)

After clustering set B, the obtained results will be transformed

back into interval [α, β] by the mapping T −1 : [0, 1]n → [α,β],

where

T−1(x) = D−1x + α. (2)

Therefore, it is furthermore assumed that the whole data set A is

contained in the hypercube [0, 1]n.

A partition of the set A = {ai ∈ [0, 1]n : i = 1, . . . , m} ⊂ R
n into k

disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k⋃
j=1

π j = A, πr ∩ πs = ∅, r 	= s, |π j| ≥ 1, j = 1, . . . , k, (3)

will be denoted by �(A) = {π1, . . . , πk} and the set of all such par-

titions will be denoted by P(A; k). The elements π1, . . . , πk of the

partition � are called clusters.

If d : R
n × R

n → R+, R+ = [0,+∞〉 is some distance-like func-

tion (see e.g. Kogan (2007); Teboulle (2007)), then to each cluster

π j ∈ � we can associate its center cj defined by

c j := argmin
x∈[0,1]n

∑
ai∈π j

d(x, ai). (4)

After that, by introducing the objective function F : P(A; k) → R+,

the quality of a partition can be defined, and searching for the

globally optimal k-partition comes down to solving the following

optimization problem

argmin
�∈P(A;k)

F(�), F(�) =
k∑

j=1

∑
ai∈π j

d(c j, ai), c = (c1, . . . , ck). (5)

Conversely, for a given set of centers c1, . . . , ck ∈ [0, 1]n,

by applying the minimal distance principle, the partition � =
{π(c1), . . . , π (ck)} of set A consisting of clusters:

π(c j) = {a ∈ A : d(c j, a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k,

can be defined. Thereby, one has to take into account that every

element of set A occurs in one and only one cluster. Therefore, the

problem of finding an optimal partition of set A can be reduced

to the following global optimization problem (see e.g. Späth (1983);

Teboulle (2007))

argmin
c∈[0,1]n×k

F (c), F (c) =
m∑

i=1

min
1≤ j≤k

d(c j, ai). (6)

The solutions of (5) and (6) coincide (Scitovski & Scitovski, 2013;

Späth, 1983).

Furthermore, let U ∈ {0, 1}m × k be a matrix such that

ui j =
{

1, if ai ∈ π j

0, if ai /∈ π j

, i = 1, . . . m, j = 1, . . . , k, (7)

k∑
j=1

ui j = 1, i = 1, . . . , m. (8)

Then (5) can be rewritten as (Bezdek, Ehrlich, & Full, 1984; Bezdek

et al., 2005; Theodoridis & Koutroumbas, 2009)

argmin
c∈[0,1]n×k, ui j∈{0,1}

F (c,U), F (c,U) =
m∑

i=1

k∑
j=1

ui jd(c j, ai). (9)

In order to ensure all conditions from (3), the following should be

added to conditions (7) and (8):

m∑
i=1

ui j ≥ 1, j = 1, . . . , k. (10)

Assuming that elements ai ∈ A can partially belong to differ-

ent clusters, then, due to (8), it must be uij ∈ [0, 1] (Scitovski &

Sabo, 2014). According to (Bezdek et al., 1984; Bezdek et al., 2005;

Theodoridis & Koutroumbas, 2009), the membership grade of ai in

cluster π j is determined by u
q
i j
, where parameter q > 1 is called

the fuzzifier, and the objective function becomes

F (c,U) =
m∑

i=1

k∑
j=1

uq
i j
(c) d(c j, ai). (11)
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