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a b s t r a c t

The Knapsack Sharing Problem (KSP) is a variant of the well-known NP-hard knapsack problem that has
received a lot of attention from the researches as it appears into several real-world problems such as allo-
cating resources, reliability engineering, cloud computing, etc. In this paper, we propose a hybrid
approach that combines an Iterative Linear Programming-based Heuristic (ILPH) and an improved Quan-
tum Particle Swarm Optimization (QPSO) to solve the KSP. The ILPH is an algorithm conceived to solve
0–1 mixed integer programming. It solves a series of reduced problems generated by exploiting informa-
tion obtained through a series of linear programming relaxations and tries to improve lower and upper
bounds on the optimal value. We proposed several enhancements to strengthen the performance of the
ILPH: (i) New valid constraints are introduced to speed up the resolution of reduced problems; (ii) A local
search is incorporated as an intensification process to reduce the gap between the upper and the lower
bounds. Finally, QPSO is launched by using the k best solutions encountered in the ILPH process as an ini-
tial population. The proposed QPSO explores feasible and infeasible solutions. Experimental results
obtained on a set of problem instances of the literature and other new harder ones clearly demonstrate
the good performance of the proposed hybrid approach in solving the KSP.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the 0–1 Knapsack Sharing Problem
(KSP) introduced by Brown (1979), which is a max–min optimiza-
tion problem with a knapsack constraint. This problem has a wide
range of commercial or industrial applications and occurs when
resources have to be shared or distributed fairly to several entities
(see, for instance, Brown (1979) and Tang (1988)). In the 0–1 KSP,
we deal with a set N ¼ f1; . . . ;ng of n items. Each item j 2 N yields
v j units of profit and consumes a given amount of resource wj as
for the standard 0–1 knapsack problem. The set N is decomposed
into m disjoint classes of items: i.e. for each couple ði; jÞ, i – j,
i 6 m and j 6 m, Ni \ Nj ¼ ; and N ¼

Sm
i¼1Ni. A linear function is

associated with each class of items. The objective of the 0–1 KSP
is to determine the subset of items to put in a knapsack of capacity
c in order to maximize the minimal value of the set of m linear
functions subject to a single linear knapsack constraint. In the fol-
lowing, we assume that all the data are non-negative. Let xj be a

binary variable, with xj ¼ 1 if the item j is added in the knapsack,
and xj ¼ 0 otherwise. The 0–1 KSP can be formulated as a max–
min problem (KSPmm):

ðKSPmmÞ

max min
16i6m

X
j2Ni

v jxj

( )

subject to
X
j2N

wjxj 6 c

xj 2 f0;1g; 8 j 2 N

8>>>>>><
>>>>>>:

A possible way to reformulate the problem KSPmm as a Mixed
Integer Program (MIP) consists in introducing an auxiliary con-
tinuous variable z representing the objective of the problem.
Specifically, the problem KSPmm can be equivalently reformulated
as the following 0–1 MIP:

ðKSPÞ

max z
s:t:

X
j2Ni

v jxj P z; 8 i ¼ 1; . . . ;m

X
j2N

wjxj 6 c

z P 0
xj 2 f0;1g; 8 j 2 N

8>>>>>>>>><
>>>>>>>>>:
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The KSP is known to be NP-hard since it is a generalization of
the standard 0–1 knapsack problem (KP) when we m ¼ 1 (see,
e.g., Martello and Toth (1990, 1997) or Kellerer, Pferschy, and
Pisinger (2004)). An impressive number of references can be found
for solving hard variants of knapsack problems. A significant num-
ber of papers are devoted to recent population-based algorithms.
For instance, Wang, Wang, and Xu (2012) proposed a hybrid algo-
rithm based on estimation of distribution algorithm to solve the
multidimensional knapsack problem (MKP). More recently,
Baykasoğlu and Ozsoydan (2014) proposed a firefly algorithm for
solving the MKP in both static and dynamic environments. Alijla,
Wong, Lim, Khader, and Al-Betar (2014) proposed an intelligent
water drop algorithm for solving combinatorial optimization prob-
lems including the MKP. Finally, Changdar, Mahapatra, and Pal
(2015) proposed an improved genetic algorithm to solve con-
strained knapsack problem in fuzzy environment.

Two variants of the KSP exist in the literature: the continuous
KSP and the binary KSP. The continuous KSP has been extensively
studied by Tang (1988), Pang and Yu (1989), Brown (1991), Kuno,
Konno, and Zemel (1991), Luss (1992) or Yamada and Futakawa
(1997). A large variety of exact and approximate methods have
been developed and adapted specifically for this problem. On the
contrary, the literature on the binary KSP is quite poor. Few exact
algorithms have been developed for solving optimally this variant
of the problem. Yamada, Futakawa, and Kataoka (1998) proposed a
Branch-and-Bound (B&B) algorithm and a binary search algorithm
to solve the binary KSP. The upper bounds required for the B&B
algorithm were obtained by decomposing the problem into a series
of single KP, and the lower bounds were calculated with a greedy
heuristic. The B&B algorithm was tested on a collection of random-
ly generated instances divided into three different sets: the uncor-
related instances, the weakly correlated instances and the strongly
correlated instances.

For the uncorrelated and the weakly correlated instances, the
number of variables varied from 200 to 80,000 while it varies from
200 to 400 for the strongly correlated instances, whereas the number
of classes was limited to 2. The B&B algorithm was able to solve most
of the uncorrelated and weakly correlated instances with 5,000 vari-
ables, and only a few strongly correlated instances. The binary search
algorithm was able to solve all the uncorrelated and weakly correlat-
ed instances with two classes, and the strongly correlated instances
with 200 variables. Then, the authors tested this method when the
number of classes was set to 3, 5 and 10, respectively. The approach
was able to provide an optimal solution for all the uncorrelated and
weakly correlated instances with 200 to 10,000 variables.

Hifi and Sadfi (2002) proposed an exact approach in which the
original KSP is divided into a series of single knapsack problems.
Then, each problem was solved via a dynamic programming proce-
dure slightly modified from that proposed by Gilmore and Gomory
(1966) and Martello and Toth (1990) for solving the 0–1 KP, to
ensure the optimality and to reduce the computation time. Compu-
tational results showed the competitiveness of the proposed
method compared to the alternative approaches in the literature.
Indeed, the algorithm can solve some larger instances of the prob-
lem in a reasonable running time.

Hifi, M’Halla, and Sadfi (2005) presented an accelerated version
of the previous algorithm. This new version was mainly composed
of two phases. The first phase builds a set of critical elements using
a greedy heuristic introduced in Hifi, Sadfi, and Sbihi (2002). A cri-
tical element is associated with a given class Ni of items and it cor-
responds to an estimation of the sub-capacity devoted to this class
of items. Based on a dynamic programming technique, the
knapsack problems associated with the current critical elements
are solved and an alternate critical element is chosen to guide
the search to a better solution. The process is repeated until the

convergence of the method to an optimal solution. The computa-
tional results showed a significant advantage of the proposed
approach over the previous version of the algorithm.

Hifi and M’Halla (2010) proposed another exact approach in
which the main idea is to replace the dynamic programming phase
in Hifi et al. (2002) with a specialized tree-search algorithm. This
method is particularly efficient when the number of classes is
small. The proposed algorithm realized an important average
acceleration, in particular for the strongly correlated instances.

Recently, Boyer, Baz, and Elkihel (2011) proposed an algorithm
based on a dynamic programming algorithm with a dominance
technique in order to reduce the memory occupancy and, thus, to
improve the performance of the dynamic programming methods
proposed in Hifi and Sadfi (2002) and Hifi, M’Halla, and Sadfi
(2005).

The proposed algorithm was tested on a set of uncorrelated and
strongly correlated instances of the problem. The results showed
that this approach was able to find an optimal solution for large
instances in a reasonable running time and that it consumed
less memory than the previous exact methods in the literature.
However, the best results were obtained when the number of
classes is relatively small.

Recently, Hifi and Wu (2014) proposed a new exact algorithm
based on a dichotomous search method. The original KSP is decom-
posed into a series of minimization and maximization knapsack
problems to generate lower and upper bounds, respectively. They
proposed two versions of their dichotomous search algorithm to
reduce iteratively the gap between lower and upper bounds.

A very limited number of heuristics have been proposed for
obtaining optimal or near-optimal solutions for the binary KSP.
Yamada and Futakawa (1997) extended an approach originally
developed for the continuous KSP to the binary KSP. It is based
on a greedy heuristic using the classical efficiency value v j=wj to
order the items. The algorithm identifies the class such that the
sum of its fixed-items profits in the solution is the smallest one.
Then, the first compatible item of this class is added to the current
solution, and the index of the class realizing the minimum over all
the classes is updated. The process is repeated while it is possible
to find an item to add in the knapsack. The computational experi-
ments showed that the algorithm can provide solutions of good
quality, especially for the uncorrelated instances.

Finally, Hifi et al. (2002) proposed a tabu search based algo-
rithm to solve the binary KSP. A simple and a more advanced ver-
sion of the method have been developed. In the first version, a
depth parameter and a tabu list are used. In the second version,
some intensification and diversification strategies are introduced.
In the paper, the authors emphasized the speed of the first version
and the effectiveness of the second version for the correlated and
uncorrelated instances. Logically, the experimental study showed
that the second version produced a larger number of optimal solu-
tions but required important computational effort.

This short survey on the relevant literature reveals that a few
exact algorithms have been proposed in the literature to solve
the KSP. However, a major drawback of these approaches remains
the temporal complexity when dealing with large instances. Fur-
thermore, it discloses that heuristics and metaheuristics have
received relatively less attention. Indeed, only two approximate
algorithms have been proposed for solving the KSP. Finally and
to the best of our knowledge, it can be observed that hybrid (or
cooperative) algorithms which combines the desirable properties
of different approaches to minimize their individual weaknesses
have not been used up to now to deal with this problem.

In this paper we propose a new hybrid approach that combines
an Iterative Linear Programming-based Heuristic (ILPH) with a
relatively recent evolutionary computation technique, the Quantum
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