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a b s t r a c t

Inference in Bayesian networks with large domain of discrete variables requires significant computational

effort. In order to reduce the computational effort, current approaches often assume that discrete variables

have some bounded number of values or are represented at an appropriate size of clusters. In this paper,

we introduce decision-tree structured conditional probability representations that can efficiently handle a

large domain of discrete and continuous variables. These representations can partition the large number of

values into some reasonable number of clusters and lead to more robust parameter estimation. Very rapid

computation and ability to treat both discrete and continuous variables are accomplished via modified belief

propagation algorithm. Being able to compute various types of reasoning from a single Bayesian network

eliminates development and maintenance issues associated with the use of distinct models for different types

of reasoning. Application to real-world steel production process data is presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This work has been motivated by the need to optimize production

of steel plates manufacturing. Steel plates manufacturing is a com-

plex, multi-stage process. A manufacturing plant often produces sev-

eral thousands of different steel plate SKUs. Each stage of the man-

ufacturing is not a fully deterministic process. Sometimes there may

be defects at some stage, which are then corrected by modifying the

manufacturing process. In other instances, a customer may order a

new steel plate, something that has not been manufactured yet. Due

to these circumstances, the exact times required to produce any spe-

cific SKU is not known. Production planning and scheduling mod-

els require that we estimate the production times for each grade of

steel plates. Such estimate can be made from a Bayesian network

representing the manufacturing plant and probabilities of process-

ing a steel plate at each stage of the manufacturing. Due to the com-

plexity of the steel manufacturing plant, it is not possible to use a

first-principle model of the plant to construct such Bayesian network.

In this paper we use Bayesian statistics to construct the most likely

Bayesian network for such complex manufacturing process. Having

constructed Bayesian network, we then proceed to estimate most

likely production times for each grade of steel plates. The challenging
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nature of the problem is magnified by the large number of different

grades of steel plates. This paper presents new inference algorithm in

Bayesian network with large domain discrete variables to enable us

to:

1. Estimate the probability distributions of production time from

historical data with large domain discrete variables and con-

tinuous variables.

2. Deal with unobservable (unavailable) variables such that we

have a single model and avoid multiple models that meet with

specific problems.

We present a new method for constructing most likely structure

of the Bayesian network representing a complex manufacturing pro-

cess, e.g. manufacturing of steel plates. Such networks contain a large

number of discrete variables and also contain continuous variables

parent nodes which have discrete variables children nodes. An ap-

plication to a steel plate manufacturing process, which produces a

large number of distinct steel plates and also has uncertain produc-

tion times at different manufacturing steps, demonstrates that the

proposed method can successfully compute inferences for very large

hybrid Bayesian networks.

In order to learn the tree structured CPTs, scores such as Bayesian

scores are often used as objective functions. However, greedy hill

climbing approach cannot be used since it can easily get stuck in a

local minimum at the early stage. Some kinds of approach to avoid lo-

cal minimum as much as possible are proposed, but they are compu-

tationally expensive. Therefore, we employ decision trees algorithm

http://dx.doi.org/10.1016/j.eswa.2015.11.019

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.11.019&domain=pdf
mailto:mori.nn4.junichi@jp.nssmc.com
mailto:mahalec@mcmaster.ca
http://dx.doi.org/10.1016/j.eswa.2015.11.019


2 J. Mori, V. Mahalec / Expert Systems With Applications 49 (2016) 1–19

(Breiman, Friedman, Olshen, & Stone, 1984) based on classification

trees in order to learn the tree structured CPTs. Classification trees

predict the dependent variables following decisions in the tree from

the root node down to the leaf node. Since the classification trees

group the values to capture important distinctions of continuous or

discrete variables, this method can be used to construct the context-

specific CPTs in the hybrid Bayesian networks. The classification tree

classifies discrete variables into a small number of subsets so that

the values of continuous or discrete child nodes can be distinguished

well. If Bayesian networks include continuous parent nodes with dis-

crete child nodes, the corresponding continuous variables can be dis-

cretized as finely as needed, because the domain size of discretized

variable does not increase the number of parameters in intermedi-

ate factors due to decision-tree structured CPTs. Since the classifica-

tion algorithms are typically greedy ones, the computational cost is

relatively small. Consequently, the intermediate factors can be de-

scribed compactly using a simple parametric representation called

the canonical form.

We also introduce the decision-tree structured CPT based infer-

ence algorithm in Bayesian network, which employs belief propa-

gation algorithm to deal with hybrid networks with large domain

discrete variables. In order for multiplying and marginalizing factors

during belief propagation, novel types of operations to dynamically

construct CPTs are introduced. In order to carry out other types of in-

ferences, such as causal, diagnostic, intercausal and mixed reasoning,

we employ the loopy belief propagation in the decision-tree struc-

tured CPT based Bayesian networks.

The organization of the article is as follows. Review of the related

prior work is presented in Section 2. Section 3 describes construction

of decision-tree structured CPTs for hybrid Bayesian networks with

large domain discrete variables. Section 4 describes the detailed infer-

ence algorithm including operations of product and marginalization

of factors. The presented method is applied to the steel production

processes data in Section 5. Finally, the conclusions are presented in

Section 6.

2. Review of prior related works

In this section we review prior related works and discuss the lim-

itations with respect the size of the problem and complexity of com-

putation.

Let us first review prior related works and discuss the capabilities

of the proposed methods with respect the size of the problem and

complexity of computation.

Probabilistic graphical models are popular for representing con-

ditional independencies among random variables under system un-

certainty. Such models are comprised of nodes representing random

variables and the links between the nodes which express probabilis-

tic relationships among the corresponding random variables. Two

major classes of graphical models are Bayesian networks and Markov

random fields. Bayesian networks are also called directed graphical

models since the links of the graphs represent direct dependence

among the variables and are described by arrows between links.

Markov random fields are also called undirected graphical models

since they provide a simple definition of independence among ran-

dom variables and do not have a particular directionality indicated by

arrows (Bishop, 2006; Pearl, 1988). Both graphical models are pop-

ular in the machine learning community and have been applied to

various fields including medical diagnostics, speech recognition, gene

modeling, cancer classification, target tracking, sensor validation, and

reliability analysis.

In particular, Bayesian network has been widely used for systems

including many uncertainties. For instance, scenario analysis under

changing conditions is implemented by means of Bayesian inference

techniques, since Bayesian network performs well in uncertainty

environment (Buyukozkan, Kayakutlu, & Karakadlar, 2015; Cai, Sun,

Si, & Yannou, 2011). Bayesian network is also applied to predicting

the risk of software development or maintenance projects, because

it is suitable for representing the knowledge of experts under un-

certainty of conditions (Melo & Sanchez, 2008; Perkusich & Soares,

2014). As these applications indicate, Bayesian network is a powerful

tool for knowledge representation and reasoning under uncertainties

since it can visually represents the probabilistic relationships among

measured and unmeasured variables.

Each node in a Bayesian network is associated with conditional

probability distributions (CPD). The most common representations

of CPDs are conditional probability tables (CPTs), which specify

marginal probability distributions for each combination of values

of its discrete parent nodes. The number of parameters required

to represent CPTs grows exponentially both with the number of

discrete variables and with the cardinality of discrete variables. In

order to reduce the number of parameters, context-specific inde-

pendence representations have been proposed (Boutilier, Friedman,

Goldszmidt, & Koller, 1996). Furthermore, an efficient inference al-

gorithm that exploits context-specified independence has also been

proposed (Poole & Zhang, 2003). As for identification of parame-

ters of context-specific independence, learning methods such as tree-

structured CPTs (Friedman & Goldszmidt, 1996) and graph-structured

CPTs (Chickering, Heckerman, & Meek, 1997) have been developed.

However, since learning structured CPTs is NP-hard problems, all of

these methods assume that all discrete variables have a bounded

number of values or that they are already grouped at an appropri-

ate level of domain size. In the real world problem, discrete vari-

ables often have large domains and the task of grouping discrete

values requires expert knowledge that enables us to identify a rea-

sonable set of groups that well distinguish the values of discrete

variables. In order to group the discrete values in a Bayesian net-

work learning, attribute − value hierarchies (AVHs) which capture

meaningful groupings of values in a particular domain are integrated

with the tree-structured CPTs (DesJardins & Rathod, 2008). However,

if large domain discrete variables do not contain hierarchal struc-

tures, AVHs cannot capture the useful abstracts of values in that do-

main. In addition, this model cannot handle the continuous vari-

ables without discretizing them. The authors, DesJardins and Rathod

(2008) also do not apply AVH-derived CPTs to inference in Bayesian

networks.

Sharma and Poole (2003) have proposed an inference method for

Bayesian Networks containing CPTs which are represented as deci-

sion trees. The inference algorithm is based on variable elimination

(VE) algorithm; the authors introduced operations for decision trees

computations, namely multiplying factors and summing out vari-

able from a factor. However, because the computational complex-

ity of the exact inference algorithm such as VE grows exponentially

with the size of the network, this method may not be appropriate for

Bayesian networks in real world. In addition, computational cost of

reconstructing decision trees as required to compute multiplication

and marginalization of factors makes this method too expensive to

apply to large decision trees. An alternative approach is to employ

algebraic decision diagrams (ADDs) for the purpose of inference in

Bayesian network with large domain discrete variables. For instance,

ADDs have been used to represent factors and their multiplying and

summing-out operations have been proposed (Chavira & Darwiche,

2007). In addition, structured message passing has been proposed to

utilize powerful approximate inference algorithms such as cluster-

graph Belief propagation (Gogate & Domingos, 2013). In the worst

case, ADDs have the same space complexity as CPTs. To make mat-

ters worse, the factor operations of multiplication and summing-out

are polynomial in time. It should be noted that all the above meth-

ods have not considered an application of decision-tree structured

CPTs to hybrid Bayesian networks, where both discrete and continu-

ous variables appear simultaneously.
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