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Genetic algorithms can be used to construct knowledge bases. They are based on the idea of “survival of

the fittest” in the same way as natural evolution. Nature chooses the fittest ones in real life. In artificial

intelligence we need a method that carries out the comparison and choice. Traditionally, this choice is based

on fitness functions. Each alternative or possible solution is given a fitness score. If there is no ambiguity and

those scores are numbers, it is easy to order individuals according to those values and determine the fittest

ones. However, the process of assessing degrees of optimality usually involves uncertainty or imprecision.

In this contribution we discuss the comparison among fitness scores when they are known to be in an

interval, but the exact value is not given. Random variables are used to represent fitness values in this sit-

uation. Some of the most usual approaches that can be found in the literature for the comparison of those

kinds of intervals are the strong dominance and the probabilistic prior method. In this contribution we con-

sider an alternative procedure to order vague fitness values: statistical preference. We first study the con-

nection among the three methods previously mentioned. Despite they appear to be completely different

approaches, we will prove some relations among them. We will then focus on statistical preference since it

takes into consideration the information about the relation between the fitness values to compare them. We

will provide the explicit expression of the probabilistic relation associated to statistical preference when the

fitness values are defined by uniform and beta distributions when they are independent, comonotone and

countermonotone.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Expert systems traditionally involve a knowledge base (KB) con-

taining the experience provided by expertise and a rule or inference

engine, which derives solutions to particular situations from the facts

and rules of the knowledge-base. The construction of the knowledge

base is one of the major problems in this context (Merritt, 1989). Tools

that allow to build and improve the population of KBs are necessary

and genetic algorithms are a widespread option to optimize the KBs

since many years ago (Baron, Achiche, & Balazinski, 2001; Payri, 1999;

Xiong & Funk, 2006).

Genetic algorithms in artificial intelligence are supported by the

same idea as the theory of evolution: Only those individuals that

best fit survive in nature and this contributes to the improvement

of species. In order to provide the best solution to a problem, alter-

natives are compared at each state and only the fittest ones survive

to the next generation (next stage). Genetic algorithms have proved

their ability in a very wide range of fields as generate and optimize

fuzzy rule bases, create membership functions or tuning processes
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(see for example, Cordón, Herrera, Gomide, Hoffmann, & Magdalena,

2001a; Girgis, Sewisy, & Mansour, 2009; Jiménez et al., 2015). All

these tasks can be considered as optimization or search processes.

In order to measure how well each individual fits the problem at

each step fitness or objective functions are used. They usually assign a

value to each element and those with highest fitness values are used

to the next generation. Different fitness functions can be defined de-

pending on the problem and it is a relatively easy task to provide a

method or function that compares individuals and provides a best

element when the information is precise. But imprecision appears

very frequently in the context of expert systems (see, among many

others, Armero, Artacho, López-Quílez, & Verdejo, 2011; Ładyżyński

& Grzegorzewski, 2015; Palacios, Palacios, Sánchez, & Alcalá-Fdez,

2015). Tools that allow us to cope with this situation of incomplete

or imprecise knowledge become necessary.

This is the purpose of genetic fuzzy systems (GFS) which ap-

ply genetic algorithms to design and improve fuzzy systems, where

the data and/or the rules handled are vague. Genetic fuzzy systems

have received a great deal of attention in the last years (Casillas &

Martínez-López, 2009; Cordón, Herrera, Hoffmann, & Magdalena,

2001b; Elhag, Fernández, Bawakid, Alshomrani, & Herrera, 2015;

Saniee, Mohamadi, & Habibi, 2011). The input data and the output

solutions used to be crisp in the first contributions on this topic
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(Herrera, 2008). However, since some years ago, some authors (see

Sánchez, Couso, & Casillas, 2006; Sánchez & Couso, 2007; Sánchez,

Couso, & Casillas, 2007; 2009) have dealt with imprecise data to learn

and evaluate GFS.

The function that assesses the quality of a solution in the ge-

netic algorithm, that is, the fitness function, is vague in this ap-

proach. There are different ways to model imprecision in the liter-

ature (random variables, fuzzy sets, …) and many contributions have

been devoted to the comparison of fuzzy sets. We can cite, among

the most recent ones, Ezzati, Allaviranloo, Khezerloo, and Khezerloo

(2012), Wang (2015), Yu and Dat (2014), Zhang, Ignatius, Lim, and

Zhao (2014).

Sánchez, Couso, and Casillas (2009) considered that the fitness

values are unknown, but bounded in an interval and the imprecision

is here modeled by a random variable. The traditional procedures to

rank the fitness values in this case are either too strict, in the sense

that they don’t allow us to compare the intervals in many cases, as is

the case of strong dominance (Limbourg, 2005), or they are based on

estimating and comparing two probabilities (Sánchez et al., 2009).

In this contribution we consider a more general and flexible way

to compare two intervals which is based on a probabilistic relation:

statistical preference (De Schuymer, De Meyer, De Baets, & Jenei,

2003b; De Schuymer, De Meyer, & De Baets, 2003a). Firstly, we will

see the connection between this new procedure and the classical

ones. Later, we will focus on statistical preference and we will pro-

vide explicit expressions for its associated probabilistic relation. In

particular, we will consider two cases. Firstly, we will assume that

we have no information about what are the most likely values in any

of the two intervals to be compared. Thus, the uniform distribution

will be used. The assumption of a uniform distribution is not an ar-

tificial requirement and it can be considered in many situation as a

consequence of lack of information (see, for instance, Sánchez et al.,

2009; Teich, 2001). When this distribution is considered, we will ob-

tain the specific expression of the associated probabilistic and fuzzy

relations. Secondly, we will consider the situation in which the like-

lihood of the scores in the interval is increasing (resp. decreasing).

Beta distributions model these situations. We will also study statis-

tical preference in this case. Moreover, since statistical preference

takes into account the possible dependence between the distribu-

tions compared, we will consider three different situations both for

uniform and beta distributions: independence, comonotonicity and

countermonotonicity.

This contribution is organized as follows: In Section 2 we intro-

duce the problem and collect some different methods for comparing

two fitness values proposed in the literature. In Section 3 we consider

a generalization of these methods, based on a probabilistic relation

and we study how this probabilistic relation can be equivalently rep-

resented by means of a fuzzy relation. In Section 4, the defuzzification

of the probabilistic relation is considered and from here a total order

is obtained. In particular, we prove the relationship between this new

approach and some usual methods used in the literature for the com-

parison of fitness values. In the last part of this section we study the

expression of the probabilistic relation in two cases: when the fitness

values are modeled by uniform and beta distributions. Section 5 in-

cludes some final remarks and future work.

2. Usual methods of comparison

Let us consider two fitness values θ1 and θ2. In many situations,

these fitness scores θ1 and θ2 are unknown, but we have some impre-

cise information about them. Thus, we cannot determine the value of

θ1 and θ2, but we know two intervals where each of them is con-

tained. These intervals can be obtained by means of a fuzzy general-

ization of the mean squared errors (for a more detailed explanation,

see Sections 4 and 5 in Sánchez et al. (2009)) and they will be denoted

by FMSE1 and FMSE2, respectively. The comparison of this two inter-

vals is needed in order to choose the predecessor and the successor.

In this section we will introduce two of the most usual methods

that can be found in the literature for the comparison of such inter-

vals, the strong dominance and the probabilistic prior.

2.1. Strong dominance

The method of the strong dominance was considered in Limbourg

(2005). In that case, if these two intervals are disjoint, then we have

not any problem to determine the preferred interval and therefore the

decision is trivial. The problem arises when the intersection is non-

empty, since the intervals are incomparable. Thus, if FMSE1 = [a1, b1]

and FSME2 = [a2, b2], it holds that:

• If b2 < a1, then θ1 is preferred to θ2 with respect to the strong

dominance, denoted by θ1�sdθ2.
• If b1 < a2, then θ2 is preferred to θ1 with respect to the strong

dominance, denoted by θ2�sdθ1.
• Otherwise, θ1 and θ2 are incomparable.

Thus, this method is too restrictive, since it can be used only in

a very particular case. A tentative to solve this problem is to use

the stochastic order (Levy, 1998; Müller & Stoyan, 2002; Shaked &

Shanthikumar, 2002), introducing a prior knowledge about the prob-

ability distribution of the fitness. Given two random variables X and

Y with associated cumulative distribution functions FX and FY, X is

stochastically preferred to Y if and only if FX ≤ FY, with a strict in-

equality in at least one point x0, and it is denoted by X �st Y. In our

context, the stochastic order can be formulated in the following way:

θ1 �st θ2 ⇔ P(θ1 ≤ x) ≤ P(θ2 ≤ x), for any x ∈ R and P(θ1 ≤ x0) <

P(θ2 ≤ x0), for some x0 ∈ R.

In particular, if we assume that the fitness value follows a uniform

distribution (as in Teich, 2001), then:

θ1 �st θ2 ⇔
{

a1 ≥ a2 and
b1 ≥ b2,

being at least one of the inequalities strict. In particular, if θ1 strong

dominates θ2, then θ1�stθ2 regardless on the distribution of the

fitness.

Nevertheless, the stochastic order does not solve all the problems

of the strong dominance. For instance, incomparability is also allowed

with respect to this method.

2.2. Probabilistic prior

Another method, called the method of the probabilistic prior, was

proposed by Sánchez et al. (2009). As the stochastic order, it is based

on a prior knowledge about the probability distribution of the fitness,

P(θ1, θ2). In that situation, a decision rule considered was to decide

that θ1�ppθ2 if and only if

P((θ1, θ2) : θ1 > θ1)

P((θ1, θ2) : θ1 ≤ θ2)
> 1. (1)

Remark 1. If P((θ1, θ2) : θ1 ≤ θ2) = 0, the quotient of Eq. (1) is not

defined, but it is assumed that θ1�ppθ2.

Although this method allows us to compare a class of random

intervals wider than those compared by the method of the strong

dominance, not every pair of intervals can be ordered. In particular,

whenever P((θ1, θ2) : θ1 = θ2) ≥ 0.5, θ1 and θ2 will be incompara-

ble. Moreover, in this approach we consider a crisp order between

the intervals, but if we are in a fuzzy context, with imprecise data,

some kind of gradual comparison could be more appropriate as the

starting point of the comparison.
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