
Expert Systems With Applications 46 (2016) 224–235

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An efficient algorithm for increasing the granularity levels of attributes

in formal concept analysis

Ligeng Zou, Zuping Zhang∗, Jun Long

School of Information Science and Engineering, Central South University, Changsha 410083, China

a r t i c l e i n f o

Keywords:

Formal concept analysis

Concept lattice

Granularity of attributes

Interactive data exploration

a b s t r a c t

In the basic setting of formal concept analysis, a many-valued attribute needs to be replaced with several

one-valued attributes. These one-valued attributes can be interpreted as a certain level of granularity of the

corresponding many-valued attribute. In this paper, we explore theoretical relationships between concepts

before and after increasing the granularity level of one attribute, based on which we introduce an efficient

method of concept classification. Moreover, a new preprocessing routine is proposed to help generate new

concepts and restore lattice order relation. These two procedures can considerably reduce the comparisons

between sets, compared to the original Zoom-In algorithm. By employing these two procedures, we introduce

an efficient algorithm, referred to as Unfold, to increase the granularity levels of attributes. The algorithm can

perform a Zoom-In operation on a concept lattice associated with a coarser data granularity to obtain a new

one that consists of finer formal concepts without building the new lattice from scratch. We describe the

algorithm and present an experimental evaluation of its performance and comparison with another Zoom-In

algorithm. Empirical analyses demonstrate that our algorithm is superior when applied to various types of

datasets.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Formal concept analysis (FCA) (Ganter & Wille, 1999; Wille, 2009)

is a method for analysis of object-attribute data and knowledge dis-

covery. FCA proved useful in a broad range of applications such as on-

tology engineering (De Maio, Fenza, Loia, & Senatore, 2012; Kang, Li,

& Wang, 2012), information retrieval (Codocedo, Lykourentzou, As-

tudillo, & Napoli, 2013), software engineering (Li, Sun, & Leung, 2012;

Tonella, 2003), mining gene expression data (Amin, Kassim, & Hefny,

2013), linguistics (Priss & Old, 2010) and data mining (La, Le, & Vo,

2014). Comprehensive references to applications of FCA can be found

in Poelmans, Ignatov, Kuznetsov, and Dedene (2013).

In the classic setting of FCA, the input data is assumed to be a

Boolean matrix where every row is an object and every column is

an attribute. However, a binary table containing only 0 s and 1 s is

very rare among real datasets, and general attributes in a real dataset

could be categorical, ordinal, nominal, etc. In order to transform a

data table with general attributes into a one-valued context, FCA uses

so-called conceptual scaling to replace a many-valued attribute with

several one-valued attributes (Ganter & Wille, 1999). The choice of

the scale attributes is usually made by a domain expert according

∗ Corresponding author. Tel.: +86 073182539925.

E-mail addresses: ligeng-zou@csu.edu.cn (L. Zou), zpzhang@csu.edu.cn (Z. Zhang),

jlong@csu.edu.cn (J. Long).

to what values the general attribute may have, which means it is a

matter of interpretation. The selected one-valued attributes can be

seen as a representation of a certain granularity level of the cor-

responding attribute, and appropriate granularity levels may reveal

particular interesting patterns in the concept lattice (Belohlavek, De

Baets, & Konecny, 2014). Moreover, if the concept lattice correspond-

ing to the current granularity level does not expose valuable pat-

terns, one may want to increase or decrease the level of granular-

ity to seek desirable information. Therefore, the capability to change

the granularity level of an attribute interactively is necessary and

fundamental.

In this paper, we focus on the problem of how to update a con-

cept lattice using a finer granularity level of one attribute. We ex-

plore theoretical relationships between concepts before and after in-

creasing the granularity level of the selected attribute. Particularly,

we provide sufficient and necessary conditions for identifying differ-

ent types of concepts. Theoretical bases for fixing the covering re-

lation are also adapted from Van Der Merwe, Obiedkov, and Kourie

(2004) and Carpineto and Romano (2004). Based on these theoretical

foundations, we propose an efficient algorithm, called Unfold, for in-

creasing the granularity levels of attributes, which includes a unified

procedure to determine the type of a concept and a special prepro-

cessing procedure to facilitate the formation of new concepts and the

restoration of lattice order relation. Experimental results show that

our proposal performs considerably better than the other method in

most situations.

http://dx.doi.org/10.1016/j.eswa.2015.10.026

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.10.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.10.026&domain=pdf
mailto:ligeng-zou@csu.edu.cn
mailto:zpzhang@csu.edu.cn
mailto:jlong@csu.edu.cn
http://dx.doi.org/10.1016/j.eswa.2015.10.026


L. Zou et al. / Expert Systems With Applications 46 (2016) 224–235 225

The paper is composed as follows. In Section 2, we recall some

basic notions from FCA. Section 3 gives a brief survey of related work

on granularity of attributes. Section 4 describes our algorithm and

provides theoretical foundations. Section 5 presents an experimental

evaluation of the performance of the presented algorithm. Our work

is concluded in Section 6.

2. Basic notions from formal concept analysis

In this section, we recall some basic FCA notions and conventions

concisely. The reader is kindly referred to Ganter and Wille (1999) for

a comprehensive background.

Definition 1. A formal context is a triplet K = (G, M, I), where I ⊆ G×M

is a binary relation between G and M. The elements in G and M are

called objects and attributes, respectively. gIm or (g, m) ∈ I indicates

the object g has the attribute m.

Definition 2. For a set A ⊆ G of objects we define the set of attributes

common to all objects in A as:

A↑I = {m ∈ M|∀g ∈ A, gIm}.
Correspondingly, for a set B ⊆ M of attributes we define the set of

objects that have all attributes in B as:

B↓I = {g ∈ G|∀m ∈ B, gIm}.
Definition 3. A formal concept of a formal context K = (G, M, I) is a

pair (A, B) where A ⊆ G, B ⊆ M, A↑I = B and B↓I = A. A and B are called

the extent and the intent of (A, B), respectively.

Definition 4. Let (A1, B1) and (A2, B2) be two formal concepts of a

given formal context K. (A1, B1) is called a superconcept of (A2, B2) and

(A2, B2) is called a subconcept of (A1, B1) if A2 ⊆ A1 (or equivalently,

B1 ⊆ B2) which can be denoted by (A2, B2) ≤ (A1, B1). The set of all

formal concepts of K together with the superconcept-subconcept re-

lation makes a complete lattice that is called the concept lattice of the

context.

Since ≤ is a partial order, we can adopt the definition of neighbor-

ing nodes of order theory here.

Definition 5. Let c1 and c2 be two concepts of a given formal context

K. We say c1 is a lower neighbor (or a child) of c2 and c2 is an upper

neighbor (or a parent) of c1, if c1 ≤ c2 and there is no other concept c3

with c3 	= c1, c3 	= c2 and c1 ≤ c3 ≤ c2. This relationship (also called

the covering relation) is denoted by c1 ≺ c2

Proposition 1. If K = (G, M, I) is a formal context, A, A1, A2 ⊆ G are sets

of objects and B, B1, B2 ⊆ M are sets of attributes, then,

(1) A1 ⊆ A2 ⇒ A2
↑I ⊆ A1

↑I,

(2) B1 ⊆ B2 ⇒ B2
↓I ⊆ B1

↓I,

(3) A ⊆ A↑I↓I,

(4) B ⊆ B↓I↑I,

(5) A↑I = A↑I↓I↑I,

(6) B↓I = B↓I↑I↓I,

(7) A ⊆ B↓I ⇔ B ⊆ A↑I ⇔ A×B ⊆ I.

Corollary 1. A↑I↓I is the smallest extent that includes A, and B↓I↑I is the

smallest intent that includes B.

Corollary 2. A ⊆ G is the extent of a formal concept if and only if A =
A↑I↓I. Similarly, B ⊆ M is the intent of a formal concept if and only if B =
B↓I↑I.

Proposition 2. If T is an index set and, for every t ∈ T, At ⊆ G is a set of

objects, then

(
⋃

t∈T

At)
↑I =

⋂

t∈T

At
↑I

The same holds for sets of attributes too.

3. Related work

3.1. Granularity of attributes

As we discussed in Section 1, a many-valued table has to be trans-

formed into a Boolean matrix using conceptual scaling in the basic

setting of FCA. Scaling is a process of replacing each general attribute

(e.g. categorical, ordinal, nominal, etc.) with a number of one-valued

attributes. For a many-valued attribute, the choice of its correspond-

ing scale attributes in a conceptual scale determines how many de-

tails we use to describe the attribute. The selection of appropriate

one-valued attributes for a general attribute naturally requires a user

to experiment with data interactively for multiple times. If the result-

ing formal concepts are too specific and expose too many details, the

user can choose a coarser granularity level of the attribute. Similarly,

one can choose a finer level of granularity to obtain concepts that are

more specific.

If a new concept lattice is constructed every time when the user

changes the granularity of a general attribute, the process of select-

ing proper one-valued attributes will be very computationally expen-

sive and time consuming. To the best of our knowledge, this problem

was first addressed by Hashemi, De Agostino, Westgeest, and Talburt

(2004), and they introduced an algorithm for creating a concept lat-

tice for the coarser data granularity by updating the lattice generated

for the finer data granularity. Belohlavek and Sklenar (2005) gives a

formal definition of granularity of attributes in FCA. Algorithms that

perform Zoom-In/Zoom-Out operations on an original concept lattice

can be found in Belohlavek, De Baets, and Konecny (2012). Then, ex-

tended versions of algorithms in Belohlavek et al. (2012) are provided

by Belohlavek et al. (2014), which exploit disjointness character of

a granularity tree. A granularity tree is a hierarchy for conveniently

employing granularity of attributes in FCA, which can be formally de-

fined as follows (Belohlavek et al., 2014).

Definition 6. Let X be a set of objects. A g-tree (granularity tree) for

attribute y is a rooted tree with the following properties:

(1) each node of the tree is labeled by a (unique) attribute name:

the root is labeled by y;

(2) to each label z of a node a set z⇓ ⊆ X is associated; the objects

to which attribute z applies;

(3) if the nodes labeled by z1, …, zn are the successors of the node

labeled by z, then {z
⇓
1

, . . . , z
⇓
n } is a partition of z⇓.

A particular level of granularity of attribute y can be described by

a cut in a g-tree, which can be defined as follows (Belohlavek et al.,

2014).

Definition 7. A cut in a g-tree for y is a set S of node labels of the g-

tree such that for each leaf node u, there exists exactly one node v on

the path from the root y to u such that the label of v belongs to S.

For two cuts S1 = {y1, …, ym} and S2 = {z1, …, zn} of a given g-tree,

we say S1 ≤ S2 if {y
⇓
1

, . . . , y
⇓
m} is a subpartition of {z

⇓
1

, . . . , z
⇓
n }, i.e. for

every yi there exits zj such that y
⇓
i

⊆ z
⇓
j

. Hence, S1 may be seen as a

refinement of S2.

Example 1. For Table 1, let us assume that attribute c is many-valued,

while a, b and d are one-valued attributes. Values of c are not given

explicitly, for the sake of simplicity. One may consider a simple g-

tree for attribute c with a root labeled by c, which is illustrated in

Fig. 1. The corresponding sets of objects are given by c⇓ = {1, 2, 3, 5,

6, 7}, c
⇓
1

= {1, 2, 5}, c
⇓
2

= {3, 6, 7}, c
⇓
3

= {6} and c
⇓
4

= {3, 7}. There

are three cuts in the g-tree, i.e., {c}, {c1, c2} and {c1, c3, c4}. It is easy

to see that {c1, c3, c4} ≤ {c1, c2} ≤ {c}. �

Suppose that (G, M, I) is a many-valued context, and we have a g-

tree Ty for each attribute y ∈ M. Let Sy be a cut in Ty for each y ∈ M.



Download English Version:

https://daneshyari.com/en/article/382218

Download Persian Version:

https://daneshyari.com/article/382218

Daneshyari.com

https://daneshyari.com/en/article/382218
https://daneshyari.com/article/382218
https://daneshyari.com

