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Tülin İnkaya∗
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Spectral clustering is a popular clustering method due to its simplicity and superior performance in the data

sets with non-convex clusters. The method is based on the spectral analysis of a similarity graph. Previous

studies show that clustering results are sensitive to the selection of the similarity graph and its parameter(s).

In particular, when there are data sets with arbitrary shaped clusters and varying density, it is difficult to

determine the proper similarity graph and its parameters without a priori information. To address this issue,

we propose a parameter-free similarity graph, namely Density Adaptive Neighborhood (DAN). DAN combines

distance, density and connectivity information, and it reflects the local characteristics. We test the perfor-

mance of DAN with a comprehensive experimental study. We compare k-nearest neighbor (KNN), mutual

KNN, ε-neighborhood, fully connected graph, minimum spanning tree, Gabriel graph, and DAN in terms of

clustering accuracy. We also examine the robustness of DAN to the number of attributes and the transfor-

mations such as decimation and distortion. Our experimental study with various artificial and real data sets

shows that DAN improves the spectral clustering results, and it is superior to the competing approaches.

Moreover, it facilitates the application of spectral clustering to various domains without a priori information.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral clustering determines the clusters based on the spectral

analysis of a similarity graph. The approach is easy to implement,

and it outperforms traditional clustering methods such as k-means

algorithm. For this reason, it is one of the widely used clustering al-

gorithms in bioinformatics (Higham, Kalna, & Kibble, 2007), pattern

recognition (Vázquez-Martín & Bandera, 2013, Wang, 2008), image

segmentation (Zeng, Huang, Kang, & Sang, 2014), and text mining

(Dhillon, 2001, He, Qin, & Liu, 2012).

Basically, a spectral clustering algorithm consists of three steps:

pre-processing, decomposition, and grouping. In the pre-processing

step, a similarity graph and its adjacency matrix are constructed for

the data set. In the decomposition step, the representation of the data

set is changed using the eigenvectors of the matrix. In the group-

ing step, clusters are extracted from the new representation. In this

study, we focus on the pre-processing step. Our aim is to represent

the local characteristics of the data set using a similarity graph. In

spectral clustering, we consider three important properties of a sim-

ilarity graph (Von Luxburg, 2007): (1) The similarity graph should be

symmetric and non-negative. (2) The similarity graph should be con-

nected unless the connected components (subclusters) form the tar-

get clusters. (3) The similarity graph should be robust.
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The most commonly used similarity graphs in the literature are

k-nearest neighbor (KNN), mutual KNN, ε-neighborhood, and fully

connected graphs (Von Luxburg, 2007). The main idea in these ap-

proaches is to represent the local characteristics of the data set us-

ing a parameter such as k, ε, and σ . A recent study by Maier, von

Luxburg, and Hein (2013) shows that the clustering results depend

on the choice of the similarity graph and its parameters. However,

proper parameter setting becomes a challenging task for the data sets

with arbitrary shaped clusters, varying density, and imbalanced clus-

ters. For instance, KNN may connect the points in different density re-

gions. A similar problem is observed in the ε-neighborhood and fully

connected graphs due to the spherical-shaped neighborhoods.

To overcome these limitations a stream of research addresses

parameter selection problem for the similarity graph (Nadler &

Galun, 2006, Ng, Jordan, & Weiss, 2002, Zelnik-Manor & Perona,

2004, Zhang, Li, & Yu, 2011). Another research stream incorpo-

rates the proximity relations to the similarity graph using mini-

mum spanning tree and β–skeleton (Carreira-Perpinan & Zemel,

2005, Correa & Lindstorm, 2012). There are also studies that use

k-means, genetic algorithms, and random forests to obtain robust

similarity matrices (Beauchemin, 2015, Chrysouli & Tefas, 2015, Zhu,

Loy, & Gong, 2014). These approaches provide some improvement,

however, they still include parameters to be set properly. More-

over, some of them do not handle the data sets with varying

density.

In this study, we propose a parameter-free similarity graph

to address the limitations of the aforementioned approaches. We

adopt the neighborhood construction (NC) method proposed by
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İnkaya, Kayalıgil, and Özdemirel (2015) to reflect the local charac-

teristics of the data set. NC yields a unique neighborhood for each

point, and the similarity graph generated using NC neighborhoods

may be asymmetric. Also, it may include isolated vertices and sub-

graphs. However, spectral clustering algorithms require symmetric

and connected subgraphs. In order to satisfy these properties, we per-

form additional steps. First, we construct an undirected graph using

NC neighborhoods. We call this graph Density Adaptive Neighborhood

(DAN). Then, we insert edges to DAN if it includes more connected

components than the target number of clusters. Finally, we form the

weighted adjacency matrix of DAN using Gaussian kernel function. In

order to find the clusters, decomposition and grouping steps of any

spectral clustering algorithm are applied to the proposed approach.

Our comprehensive experimental study with various artificial and

real data sets shows the superiority of DAN to competing approaches.

To sum up, our contribution is the development of a pre-

processing step for spectral clustering with no a priori information

on the data set. The proposed approach includes the construction of a

parameter-free similarity graph and its weighted adjacency matrix. It

is flexible in the sense that it can be applicable to any spectral cluster-

ing algorithm. It works in the data sets with arbitrary shaped clusters

and varying density. Moreover, it is robust to the number of attributes

and transformations.

The rest of the paper is organized as follows. The related litera-

ture is provided in Section 2. We introduce the background infor-

mation about spectral clustering and similarity graphs in Section 3.

The proposed approach is explained in Section 4. The performance

of the proposed approach is examined in Section 5. The discussion

of the experiments is given in Section 6. Finally, we conclude in

Section 7.

2. Literature review

Spectral clustering has its roots in graph partitioning problem.

Nascimento and Carvalho (2011), Von Luxburg (2007), and Jia, Ding,

Xu, and Nie (2014) provide comprehensive reviews about the spectral

clustering algorithms.

The literature about spectral clustering can be classified into two

categories (Zhu et al., 2014): (1) The studies that focus on data group-

ing when a similarity graph is given, and (2) the studies that focus

on similarity graph construction when a particular spectral cluster-

ing algorithm is used. In the first category, there are several studies

that improve the clustering performance. For instance, Liu, Poon, Liu,

and Zhang (2014) use latent tree models to find the number of lead-

ing eigenvectors and partition the data points. Lu, Fu, and Shu (2014)

combine spectral clustering with non-negative matrix factorization,

and propose non-negative and sparse spectral clustering algorithm.

Xiang and Gong (2008) introduce a novel informative/relevant eigen-

vector selection algorithm, which determines the number of clusters.

In this study, we address the similarity graph construction prob-

lem, so our work is related to the second category. A group of stud-

ies in the second category aims to determine the local characteris-

tics of the data set using proper parameter selection. Ng et al. (2002)

suggest the execution of spectral clustering algorithm for different

values of neighborhood width σ . Then, they pick the one having the

least squared intra-cluster distance to the centroid. This method ex-

tracts the local characteristics better. However, additional parameters

are required, and the computational complexity is high. Zelnik-Manor

and Perona (2004) propose the calculation of a local scaling parame-

ter σ i for each data point instead of a global parameter σ . However,

this approach has limitations for the data sets with density varia-

tions. Zhang et al. (2011) introduce a local density adaptive similarity

measure, namely Common-Near-Neighbor (CNN). CNN uses the local

density between two points, and reflects the connectivity by a set of

successive points in a dense region. This approach helps scale param-

eter σ in the Gaussian similarity function. In an alternative scheme,

Nadler and Galun (2006) introduce a coherence measure for a set of

points in the same cluster. The proposed measure is compared with

some threshold values to accept or reject a partition. Although this

approach finds the clusters correctly, it is not capable of finding clus-

ters with density variations.

Carreira-Perpinan and Zemel (2005), and Correa and Lindstorm

(2012) use proximity graphs to incorporate the connectivity informa-

tion to the similarity graph. Carreira-Perpinan and Zemel (2005) pro-

pose two similarity graphs based on minimum spanning tree (MST).

Both graphs are constructed using an ensemble of trees. In the first

graph, each point is perturbed using a noise model, and a given num-

ber of MSTs are constructed using perturbed versions of the data

set. Then, these MSTs are combined to obtain the similarity graph.

In the second one, a given number of MSTs are constructed such

that the edges in the MSTs are disjoint. Then, the combination of

these disjoint MSTs forms the similarity graph. Correa and Lindstorm

(2012) introduce an approach that combines β–skeleton (empty re-

gion) graph with a local scaling algorithm. The local scaling algorithm

uses a diffusion-based mechanism. It starts from an estimate of the

local scale, and the local scale is refined for some iterations. Two pa-

rameters are used to control the diffusion speed. Although these ap-

proaches find arbitrary shaped clusters, density relations among the

data points are not reflected to the similarity graphs. Moreover, their

performances are sensitive to the proper parameter selection.

A group of studies combine various methods to improve the

similarity matrix construction. For example, a recent study by

Beauchemin (2015) proposes a density-based similarity matrix con-

struction method based on k-means with subbagging. The subbag-

ging procedure increases the density estimate accuracy. However,

the proposed approach requires six hyperparameters. Moreover, it

has shortcomings when there is manifold proximity in the data set.

Zhu et al. (2014) use clustering random forests to obtain a robust sim-

ilarity matrix. A binary split function is optimized for learning a clus-

tering forest. This also includes two parameters. Chrysouli and Tefas

(2015) combine spectral clustering and genetic algorithms (GA). Us-

ing GA, they evolve a number of similarity graphs according to the

clustering result.

There are also other variants of spectral clustering algorithms.

For example, approximate spectral clustering (ASC) is developed for

large data sets. ASC works with the representatives of data sam-

ples (points), namely prototypes. Hence, the desired similarity matrix

should reflect the relations between the data samples and prototypes.

Taşdemir (2012) adopts the connectivity graph proposed by Taşdemir

and Merényi (2009), and introduces a similarity measure for the vec-

tor quantization prototypes, namely CONN. CONN calculates the simi-

larity measure considering the distribution of the data samples in the

Voronoi polygons with respect to the prototypes. Taşdemir, Yalçin,

and Yildirim (2015) extend this idea and incorporate topology, dis-

tance and density information using geodesic-based similarity crite-

ria. Different from these studies, we aim to define the relations among

all points in the data set.

In this study, we propose a pre-processing step for spectral clus-

tering, with no a priori information. The proposed approach yields

a similarity graph and its weighted adjacency matrix, which can be

used with any spectral clustering algorithm. Our work differs from

the previous studies in the following sense: (1) It is a parameter-free

approach. (2) It reflects the connectivity, density and distance rela-

tions among all data points. (3) It works on the data sets not only

with convex clusters, but also with clusters having arbitrary shapes

and varying density. (4) It is robust to the transformations in the

data set.

3. Spectral clustering

In this section, we explain the most commonly used similarity

graphs and spectral clustering algorithms in the literature.
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