
Expert Systems With Applications 42 (2015) 9512–9527

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Forward and backward synchronizing algorithms

Adam Roman a, Marek Szykuła b,∗

a Institute of Computer Science, Jagiellonian University, Cracow, Poland
b Institute of Computer Science, University of Wrocław, Joliot-Curie 15, Wrocław PL-50-383, Poland

a r t i c l e i n f o

Keywords:

Synchronizing automaton

Synchronizing algorithm

Reset word

Reset length

Reset sequence

Sequential circuit

a b s t r a c t

Automata synchronization has many important applications, mostly in conformance testing of electrical cir-

cuits, self-correcting codes and protocol testing. Finding a shortest synchronizing word cannot be done in

polynomial time, assuming P �= NP. In some situations, especially for very large automata, finding such a

word is almost impossible. Therefore, we accept any synchronizing word that is reasonably short and can be

calculated in short time. The existing algorithms are either polynomial (quick, but not optimal) or exponen-

tial (exact, but useless in case of large automata). In this paper we present a flexible algorithmic framework

for synchronization. It allows the user to parameterize the algorithm to obtain a desired balance in terms of a

trade-off between memory usage, runtime and optimality. We also discuss many practical issues that affect

efficiency of an implementation.

In particular, we design a new polynomial backward algorithm, which works significantly better than previ-

ously used heuristic algorithms. Finally, we present detailed results of experiments involving automata up to

2000 states, which compare our algorithms in various settings and the other known algorithms, and check

the impact of different parameters on the results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A finite automaton is called synchronizing if there exists a word,

called a synchronizing sequence or synchronizing word, that takes

the automaton to a unique final state, regardless of the initial one.

This property is not only a theoretical concept – it has an impor-

tant application in conformance testing, mainly for embedded con-

trollers, sequential circuits and communication protocols (Holzmann,

1991; Lai, 2002; Lee & Yannakakis, 1994; 1996; Sidhu & Leund, 1989).

Synchronizing words have been used to generate test cases for syn-

chronous circuits with no reset (Cho, Jeong, Somenzi, & Pixley, 1993;

Pixley, Jeong, & Hachtel, 1992; Rho, F., & Pixley, 1993) (a reset here is

a trivial synchronizing word of length 1).

In conformance testing one wants to check if a SUT – system un-

der test (protocol, circuit etc.) – conforms to a given specification.

In case of reactive systems the underlying model is usually a Mealy

automaton – a finite state machine that generates output. Most of

the conformance testing algorithms combine techniques for investi-

gating particular states or transitions of a finite state machine. The

techniques, among others, are state identification, state validation,

homing and synchronizing sequences. Synchronizing word allows us

to gain the control over the machine by identifying the (synchro-

∗ Corresponding author.

E-mail addresses: roman@ii.uj.edu.pl (A. Roman), msz@cs.uni.wroc.pl (M. Szykuła).

nized) state which we should currently be in. If a SUT does not con-

form to the model, we can easily verify that by analyzing an output

for a so-called distinguishing sequence from the synchronizing state

(Krichen, 2005).

From the practical point of view, the shorter the synchronizing

word is, the better. Unfortunately, the problem of finding the shortest

such sequence is FPNP[log]-hard, and the related decision problem is

both NP- and co-NP-hard (Olschewski & Ummels, 2010). Therefore we

have to use either polynomial heuristic algorithms or exact ones, but

with exponential runtime. Moreover, in case of sequential circuits the

state space is usually very big, exponential in the number of latches,

which complicates the problem. Rho et al. (1993) noticed that in the

circuits with relatively long synchronizing sequences conformance

testing is more difficult and, therefore, the benefit of using an explicit

synchronizing word is more prominent in this case. The authors sug-

gested an algorithm based on binary decision diagrams, which works

better than the straightforward exponential one, but still for some

hard examples there is a big gap between the computed word and the

shortest synchronizing sequences. The fastest currently known algo-

rithm for this problem (Kisielewicz, Kowalski, & Szykuła, 2013, 2015),

which finds a minimal synchronizing word, works quite effectively

for real-world example automata, and can deal with automata up to

a few hundred of states. However, for larger examples, we are left

with polynomial non-optimal solutions. For other results concerning

development and improvement of synchronizing algorithms, both

http://dx.doi.org/10.1016/j.eswa.2015.07.071

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.07.071
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.07.071&domain=pdf
mailto:roman@ii.uj.edu.pl
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.1016/j.eswa.2015.07.071

A. Roman, M. Szykuła / Expert Systems With Applications 42 (2015) 9512–9527 9513

exact and polynomial, see e.g. Eppstein (1990) Gerbush and Heeringa

(2011); Güniçen, Erdem, and Yenigün (2013); Kudłacik, Roman,

and Wagner (2012); Roman (2009); Skvortsov and Tipikin (2011);

Trahtman (2003 2006).

In this paper we introduce a framework for building flexible syn-

chronizing algorithms. Flexibility should be understood here as the

ability to parametrize the algorithm to obtain a desired balance in

terms of a trade-off between memory usage, runtime and synchro-

nizing word length. We present two generic algorithms. One works in

a top-down manner, similar to the exponential one. The second one

is quite opposite, as it uses the bottom-up approach, starting from

singletons and trying to reach the whole set of states of the input

automaton. Both algorithms can be tuned in order to obtain the bal-

ance mentioned above. Also, they can be combined together, which

in most cases is more effective than each of them separately. The

combined version is able to handle very large automata, with several

hundreds of states, making it very practical for real applications. Ac-

cording to our experiments, in average case it also finds shorter reset

words than other heuristic polynomial algorithms used so far.

The main reason for designing our algorithm is as follows. There is

a plethora of problems related to synchronization. Some of them re-

quire to find a shortest synchronizing word. In others we are satisfied

when we find quickly a reasonably short word. In some situations we

may require the word as shortest as possible, but because of some

constraints (like: large number of states, not enough memory, short

time) we need to make some trade-off. The flexible algorithm fits per-

fectly in all these situations. By choosing appropriate parameters we

can knowingly balance between all existing constraints. In this sense

our approach is universal for all types of synchronization problems.

We can mention that, according to the recent result of

Gawrychowski and Straszak (2015), unless P = NP, it is not pos-

sible to approximate the length of the shortest reset word within

a factor of n1−ε , for any ε > 0 (cf. also Berlinkov, 2014a; 2014b;

Gerbush and Heeringa, 2011 for hardness of approximation). On

the other hand, all known synchronizing algorithms that rely on

top-down manner (e.g. Eppstein (1990)) have n − 1 approximation

factor. Gerbush and Heeringa (2011) have generalized the Eppstein

algorithm and have provided a polynomial algorithm with a slightly

better, though still linear, approximation factor
⌈

n−1
k−1

⌉
, for a fixed k.

However, its space complexity is O(nk), which makes it impractical

even for very small values of k.

The paper is constructed as follows. In Section 2 we introduce

the terminology that will be used throughout the paper. In Section 3

we describe a generic approach to finding synchronizing sequences.

Then, in Sections 4 and 5, we describe and analyze our new algo-

rithms. We also discuss various weight functions for the algorithms,

that are heuristic evaluations directing the search; these are pre-

sented in Section 6. In Section 7 we describe the experimental re-

sults, including the comparison with other approaches for finding

short synchronizing words for some benchmark data related to se-

quential circuits testing.

2. Basic notions

A finite automaton A is a triple 〈Q , �, δ〉, where Q is a finite set of

states, � is a finite alphabet and δ: Q × � → Q is a transition func-

tion. By �∗ we denote a free monoid over �, that is a set of all finite

words over �. Any element w ∈ �∗ is called a word and its length

|w| is the number of its letters. An empty word ε (which is a neutral

element of �∗) has length 0. Transition function δ can be extended

in a natural way to all words and subsets of states: for any P ⊆ Q , a

∈ �, w ∈ �∗ we define δ(P, aw) = ⋃
p∈P δ(δ(p, a), w) and δ(P, ε) = P.

Sometimes, instead of writing δ(P, a) we will just write Pa. By Pa−1

we denote the preimage of the set P under the letter a, that is Pa−1 =
{q ∈ Q : δ(p, a) ∈ P}.

Let A = 〈Q,�, δ〉 be an automaton. A word w ∈ �∗ is synchro-

nizing, or reset, for A if it takes all states to one state, that is, if

|δ(Q, w)| = 1. Equivalently, we can say that w is synchronizing for A
if for any two states p, q ∈ Q we have δ(p, w) = δ(q, w). If there exists

a synchronizing word w for A, we say that A is synchronizing and

that s = δ(Q, w) is a synchronizing state for w. Not all automata are

synchronizing, for example automata whose underlying graph is not

connected or automata in which all letters act like permutations on Q.

It is easy to observe that if w is a synchronizing word for A and

δ(Q, w) = s, then so is any word in the form vwu, v, u ∈ �∗, be-

cause |δ(Q, vwu)| = |δ(P, wu)| = |δ(s, u)| = 1 for some P = δ(Q, v).

So the natural question is: what is the shortest possible synchronizing

word for a given automaton? We will call it a minimal synchronizing

word and we will shortly call its length by reset length (sometimes

called reset threshold). The famous Černý conjecture (Černý, 1964)

states that the minimal synchronizing word for any n-state automa-

ton has length ≤ (n − 1)2. This conjectured bound is tight, as for any n

there exists an automaton, called Černý automaton Cn, with the reset

length equal to (n − 1)2. It is defined on states Q = {0, 1, . . . , n − 1}
over binary alphabet � = {a, b} with transition function defined as

follows:

δ(p, x) =
{

p + 1 (mod n) for x = a,

p for x = b ∧ p < n − 1,

0 for x = b ∧ p = n − 1.

The best currently known upper bound is (n3 − n)/6. It was proved

independently by Pin (1983) and Klyachko, Rystsov, and Spivak

(1987).

A synchronizing algorithm takes as an input a finite automaton

A = 〈Q,�, δ〉 and returns its synchronizing word or says that A is

not synchronizing.

There are two auxiliary constructions frequently used when de-

signing synchronizing algorithms. First one is so-called power au-

tomaton. For a given A = 〈Q,�, δ〉 its power automaton is P(A) =
〈2Q \ {∅},�, δ∗〉, where 2Q are all possible subsets of Q and δ∗ is just δ
extended to subsets of the states: δ∗(p, a) = ⋃

q∈p δ(q, a). It is easy to

see that the shortest path going from state Q to some singleton state

corresponds to a minimal synchronizing word. The power automa-

ton is a basis for the exact, exponential synchronizing algorithms. The

second construction is so-called pair automaton, which is a subset of

P(A), consisting only of sets of size less or equal 2. It is utilized in the

Eppstein-type algorithms described below.

3. General framework

First, let us describe some existing forward-type algorithms and

show how to fit them into a single generic model that uses the

concepts of weight and list length, which will also be utilized in

the backward algorithm described later in the next section. The

parametrization of the generic algorithm will allow us to construct

many different versions/extensions of the existing algorithms and

therefore being flexible in terms of the algorithm precision and

resource (time and memory) utilization.

The simplest and most naive is the exponential algorithm that

does BFS search on the whole power automaton. It always finds the

shortest synchronizing word, but its complexity is exponential in the

number of states. Natarajan (1986) and Eppstein (1990) algorithms

work in the polynomial time. The idea behind Natarajan’s algorithm

is simple: start with the whole set P = Q of states and in each step

pick arbitrary two states p, q ∈ Q and find a word τ p, q ∈ �∗ such

that δ(p, τp,q) = δ(q, τp,q). Next, put P := δ(P, τ p, q) and repeat the

same procedure until the singleton state is reached. The synchroniz-

ing word is the concatenation of all words found during these steps.

This algorithm works in O(n4 + kn3) time complexity.

Eppstein algorithm is in fact an improved version of Natara-

jan’s one. It does some preprocessing at the beginning, which al-

Download English Version:

https://daneshyari.com/en/article/382253

Download Persian Version:

https://daneshyari.com/article/382253

Daneshyari.com

https://daneshyari.com/en/article/382253
https://daneshyari.com/article/382253
https://daneshyari.com

