
Improved security of a dynamic remote data possession checking
protocol for cloud storage

Yong Yu a,b, Jianbing Ni a,⇑, Man Ho Au c, Hongyu Liu a, Hua Wang a, Chunxiang Xu a

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
b State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
c Department of Computing, The Hong Kong Polytechnic University, Hong Kong

a r t i c l e i n f o

Article history:
Available online 19 June 2014

Keywords:
Cloud storage
Data possession checking
Homomorphic hashing
Dynamic auditing

a b s t r a c t

Cloud storage offers the users with high quality and on-demand data storage services and frees them
from the burden of maintenance. However, the cloud servers are not fully trusted. Whether the data
stored on cloud are intact or not becomes a major concern of the users. Recently, Chen et al. proposed
a remote data possession checking protocol to address this issue. One distinctive feature of their protocol
support data dynamics, meaning that users are allowed to modify, insert and delete their outsourced data
without the need to re-run the whole protocol. Unfortunately, in this paper, we find that this protocol
fails to achieve its purpose since it is vulnerable to forgery attack and replace attack launched by a mali-
cious server. Specifically, we show how a malicious cloud server can deceive the user to believe that the
entire file is well-maintained by using the meta-data related to the file alone, or with only part of the file
and its meta-data. Then, we propose an improved protocol to fix the security flaws and formally proved
that our proposal is secure under a well-known security model. In addition, our improvement keeps all
the desirable features of the original protocol.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud storage provides a novel service model (Wu, 2011) in
which data are maintained, managed and backed up remotely
and accessed by cloud users over the network at anytime and from
anywhere (Jula, Sundararajan, & Othman, 2014). Nowadays, an
increasing number of organizations and individuals would like to
outsource their data to cloud to enjoy appealing advantages of
cloud storage. However, once a data owner uploads his/her data
to cloud and delete the local copy of the files, the owner loses phys-
ical control over the outsourced data.

Naturally, integrity and confidentiality of the data are of prime
concern in this scenario. Indeed, in the white paper entitled ‘‘Cloud
Computing Vulnerability Incidents: A Statistical Overview’’1 by the
Cloud Vulnerabilities Working Group of the cloud security alliance
(CSA), Data Loss & Leakage is the second most frequent incident
types in the seven threat types defined by CSA. Some examples are
from the prominent providers (e.g. Amazon,2 Evernote3). The same

white paper stated that ‘‘. . .the data collected is the result of a best
effort attempt.’’ since it is not mandatory for the providers to report
these incidents. On the contrary, the cloud providers are not fully
trusted (Wang, Zeng, & Yao, 2012) and it might be of their interest
to hide data loss incidents in order to maintain their reputation.

To improve accountability of the cloud server, it is therefore
desirable to have the cloud server provide evidence to convince
its users that their data are not tempered with nor discarded peri-
odically (Lin & Chang, 2011). The major research problem in this
setting is that the users do not have a local copy of the data, mean-
ing that traditional integrity mechanism (e.g. digital signature) is
not suitable as it requires the user to download the data from
the cloud, which is costly or sometimes infeasible.

To check the integrity of remote data, in 2007, Ateniese et al.
(2007, 2011) presented the notion of provable data possession
(PDP) and constructed two efficient and provably secure PDP
schemes based on homomorphic verifiable tags. In their protocols,
cloud users are allowed to verify data integrity (Kamel, 1995) with-
out retrieving the entire file. At the same time, Juels, Burton, and
Kaliski (2007) defined the model of proof of retrievability (PoR)
which allows the server to construct a concise proof to convice
the cloud user that their data can be retrieved, and proposed a sen-
tinel-based PoR construction utilizing error-correcting code. In
2008, Shacham and Waters (2008, 2013) described two efficient

http://dx.doi.org/10.1016/j.eswa.2014.06.027
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 15882402247.
E-mail address: nimengze@gmail.com (J. Ni).

1 https://cloudsecurityalliance.org/research/vulnerabilities/#_downloads.
2 http://www.businessinsider.com.au/amazon-lost-data-2011-4.
3 http://cloutage.org/incidents/125-evernote-corporation-evernote.

Expert Systems with Applications 41 (2014) 7789–7796

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.06.027&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.06.027
mailto:nimengze@gmail.com
http://https://cloudsecurityalliance.org/research/vulnerabilities/#_downloads
http://www.businessinsider.com.au/amazon-lost-data-2011-4
http://cloutage.org/incidents/125-evernote-corporation-evernote
http://dx.doi.org/10.1016/j.eswa.2014.06.027
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


and compact PoR schemes. The first one is a public verifiable PoR
scheme built from the signature algorithm due to Boneh, Lynn
and Shacham (referred to as BLS signature hereafter) (Boneh,
Lynn, & Shacham, 2001), and the other one is a private verifiable
PoR scheme based on the pseudo-random function. In 2009,
Ateniese, Kamara, and Katz (2009) put forward a framework for
building publicly-verifiable PDP scheme with an unbounded num-
ber of verifications from public-key homomorphic linear authenti-
cator which can be generated from any identification protocol. In
the following, we use the term remote data possession checking
(RDPC) protocol to refer to any protocol (including PDP and PoR)
that aims to solve the integrity of remote data.

With the proliferation of cloud storage, a number of data audit-
ing protocols such as Chen (2013), Wang, Ren, Lou, and Li (2010,
2013) and Zhu, Hu, Ahn, and Stephen (2012a, 2012b, 2012) were
proposed to ensure the integrity of the outsourced data. The afore-
mentioned research focus on static data in which the outsourced
data are not going to be modified. Recently, several PDP or PoR
schemes (Ateniese, Pietro, Mancini, & Tsudik, 2008; Erway,
Kupcu, Papamanthou, & Tamassia, 2009; Wang, Wang, Ren, Lou,
& Li, 2009, 2012; Yang & Jia, 2013) supporting dynamic data oper-
ations were proposed as well. In particular, a recent scheme by
Chen, Zhou, Huang, and Xu (2013) supports the most general forms
of data operation, such as block modification, insertion and dele-
tion. This protocol is based on a homomorphic hash algorithm, in
which the hash value of the sum of two blocks is equal to the prod-
uct of two hash values. To support data updating, the Merkle Hash
Tree (MHT) is employed to record the location for each data oper-
ation. Chen et al. also demonstrated their proposal compares
favourbly with the state-of-the-art protocols and they concluded
that the performance is limited by network bandwidth rather than
cryptographic operations.

Our contribution. The contributions of this paper are threefold.

(1) We identify several security flaws in the dynamic RDPC proto-
col in Chen et al. (2013). As long as the authenticated data
structure, Merkle Hash Tree, is well maintained, the server
can always generate a valid proof by using forgery attack or
replace attack to cheat the user that the data are well accom-
modated in cloud, while actually some data blocks may have
been corrupted. This means the protocol cannot achieve its
design goals and cannot be adopted in real-world applications.

(2) We propose an improved dynamic RDPC protocol to mend
these security weaknesses by making use of some tech-
niques including modifying the homomorphic hash func-
tions to be cryptographically secure, involving the hash
value of the data block in generating each tag, and the ran-
dom sampling trick to improve the efficiency of the protocol.

(3) We prove the security of the fixed protocol in the well-
known security model due to Ateniese et al. (2007), and
show the improvement maintains all the desirable features
of the original protocol.

Organization: The rest of the paper is organized in the following
way. Section 2 gives some preliminaries used in this paper. Section 3
reviews the dynamic RDPC protocol in Chen et al. (2013) and pre-
sents our security analysis on the protocol. Section 4 comes up with
our improved protocol and its performance. Section 5 describes the
security proof of the new protocol, and Section 6 concludes the paper.

2. Preliminaries

In this section, we review some preliminary knowledge used in
this paper, including the homomorphic hash functions and Merkle
Hash Tree.

2.1. Homomorphic hash functions

A homomorphic hash function Hð�Þ (Krohn, Freeman, &
Mazieres, 2004) consists of two sub-algorithms, namely, homo-
morphic key generation and hash generation. In the first phase, it
takes as input four security parameters ðkp; kq;m; sÞ, where kp and
kq are discrete log security parameters, m is the number of sectors
in per hash message, s is a random seed which can be generated by
hashing file name, and outputs the homomorphic key K ¼ ðp; q; gÞ,
where p and q are random primes satisfying jpj ¼ kp; jqj ¼ kq and
qjðp� 1Þ; g ¼ fg1; g2; . . . ; gmg is 1�m row vector of order q in Zp.

In hash generation, a message F is divided into n blocks, say,
F ¼ b1jjb2jj � � � jjbn, and each block is further segmented into m sec-
tors bi ¼ bi1jjbi2jj � � � jjbim. The homomorphic hash value of F is
HKðFÞ ¼ ðHKðb1Þ;HKðb2Þ; . . . ;HKðbnÞÞ, and each HKðbiÞ is computed
as

HKðbiÞ ¼
Ym
j¼1

g
bij

j mod p:

2.2. Merkle Hash Tree

A Merkle Hash Tree (MHT) (Merkle, 1980) is an authenticated
data structure, which is used to efficiently and securely prove that
a set of elements are undamaged and unaltered. It is constructed as
a binary tree where leaves are the hash values hð�Þ of authentic
data, in which hð�Þ : f0;1g� ! f0;1gc denotes a cryptographic hash
function. Fig. 1 depicts an example of authentication. A verifier
with the authentic hr requests for ðb3; b6Þ and requires the authen-
tication of the received blocks. The prover provides the verifier
with the auxiliary authentication information X3 ¼ hHKðb4Þ; hci
and X6 ¼ hHKðb5Þ; hf i. Then the verifier can verify x3 and x6

by computing hd ¼ hðHKðb3ÞjjHKðb4ÞÞ; he ¼ hðHKðb5ÞjjHKðb6ÞÞ;
ha ¼ hðhcjjhdÞ; hb ¼ hðhejjhf Þ and hr ¼ hðhajjhbÞ, and then checking
if the computed hr is the same as the authentic one.

3. Security analysis of the dynamic RDPC protocols

In this section, we review the components, security require-
ments and the construction of the dynamic RDPC protocol in
Chen et al. (2013) and show that it is vulnerable to forgery attack
and replace attack.

3.1. Components of a dynamic RDPC protocol

A remote data possession checking protocol consists of the
following algorithms (Ateniese et al., 2011): KeyGen, TagGen,
Challenge, ProofGen, ProofVerify.

� KeyGen is a probabilistic algorithm run by a cloud user. It takes a
security parameter k as input and returns K as the secret key of
the user.

Fig. 1. Merkle Hash Tree.

7790 Y. Yu et al. / Expert Systems with Applications 41 (2014) 7789–7796



Download English Version:

https://daneshyari.com/en/article/382275

Download Persian Version:

https://daneshyari.com/article/382275

Daneshyari.com

https://daneshyari.com/en/article/382275
https://daneshyari.com/article/382275
https://daneshyari.com

