
Expert Systems With Applications 56 (2016) 368–384 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Optimization of neural networks through grammatical evolution and a 

genetic algorithm 

Lídio Mauro Lima de Campos a , ∗, Roberto Célio Limão de Oliveira 

a , Mauro Roisenberg 

b 

a Faculty of Computer Engineering, Federal University of Pará, Rua Augusto Corrêa 01, Guamá, CEP:66075-100, Belém Caixa postal 479, Pará Brazil 
b Informatic and Statistic Department, Federal University of Santa Catarina, PO. Box 476, Trindade, Florianópolis 88040-900, Santa Catarina, Brazil 

a r t i c l e i n f o 

Article history: 

Received 17 August 2015 

Revised 18 January 2016 

Accepted 8 March 2016 

Available online 16 March 2016 

Keywords: 

Evolutionary computation 

Neural networks 

Grammatical evolution 

a b s t r a c t 

This paper proposes a hybrid neuro-evolutive algorithm (NEA) that uses a compact indirect encoding 

scheme (IES) for representing its genotypes (a set of ten production rules of a Lindenmayer System with 

memory), moreover has the ability to reuse the genotypes and automatically build modular, hierarchi- 

cal and recurrent neural networks. A genetic algorithm (GA) evolves a Lindenmayer System (L-System) 

that is used to design the neural network’s architecture. This basic neural codification confers scalability 

and search space reduction in relation to other methods. Furthermore, the system uses a parallel genome 

scan engine that increases both the implicit parallelism and convergence of the GA. The fitness function 

of the NEA rewards economical artificial neural networks (ANNs) that are easily implemented. The NEA 

was tested on five real-world classification datasets and three well-known datasets for time series fore- 

casting (TSF). The results are statistically compared against established state-of-the-art algorithms and 

various forecasting methods (ADANN, ARIMA, UCM, and Forecast Pro). In most cases, our NEA outper- 

formed the other methods, delivering the most accurate classification and time series forecasting with 

the least computational effort. These superior results are attributed to the improved effectiveness and 

efficiency of NEA in the decision-making process. The result is an optimized neural network architecture 

for solving classification problems and simulating dynamical systems. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Artificial Neural Networks (ANNs) are applied in classification 

( Rivero, Dorado, Rabual, & Pazos, 2010 ), control systems ( Li, Jia, 

Liu, & Ding, 2014 ), prediction ( Donate, Sanchez, & de Miguel, 2012 ), 

and many other problems ( Czajkowski, Patan, & Szyma ́nski, 2014 ). 

As the network architecture depends on the class of problem to 

be solved (classification, time series forecasting, or reinforcement 

learning), the full potential of an ANN can be exploited by optimiz- 

ing its architecture and training. The architecture is designed by 

heuristic trial-and-error methods that select the transfer function 

and training algorithm for adjusting the synaptic weights. These 

heuristics affect the learning and generalization capacities of the 

network and are usually performed by experts, who sequentially 

train different topologies to determine the best architecture for a 

specific problem. To mitigate these deficiencies, researchers have 

proposed automatic procedures for these processes. 
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Neuro-evolutive algorithms (NEAs) design and/or train ANNs 

through evolutionary algorithms (EAs). Bio-inspired algorithms 

(BIOAs) have gained popularity as efficient solvers of nonlinear op- 

timization problems ( Krömer, Platoš, & Snášel, 2014 ). In this paper, 

we investigate whether a new biologically inspired NEA can pro- 

vide an efficient automatic design tool for ANNs. 

As discussed by ( Stanley & Miikkulainen, 2003 ) , the increas- 

ing complexity of evolutionary computation demands more so- 

phisticated methods than direct mapping from genotype to phe- 

notype , ( Dasgupta & McGregor, 1992; Donate et al., 2012; Miller, 

Todd, & Hegde, 1989 ). An indirect encoding system (IES) allows 

a more compact and scalable representation than a direct encod- 

ing scheme (DES) ( Ahmadizar, Soltanian, & AkhlaghianTab, 2015; 

Hornby & Pollack, 2002; Lee, Seo, & Sim, 2007; Soltanian, Tab, Zar, 

& Tsoulos, 2013; Stanley, D’Ambrosio, & Gauci, 2009 ). 

Building an efficient encoding scheme for repetitive and 

recurrent structures is a challenging task for IES-based NEAs. 

The studies of ( Ahmadizar et al., 2015; Dasgupta & McGregor, 

1992; Donate et al., 2012; Lee et al., 2007; Miller et al., 1989; 

Niska, Hiltunen, Karppinen, Ruuskanen, & Kolehmainen, 2004; 

Sanchez & Melin, 2014; Soltanian et al., 2013; Tsoulos, Gavrilis, 

& Glavas, 2008 ) were limited to multilayer perceptron neural 
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networks (MLPs). However, dynamical systems cannot be precisely 

estimated by MLPs, and they require recurrent neural networks 

(RNNs). NEAs evolving RNNs are rarely reported in the literature 

( Beer & Gallagher, 1992; Hornby & Pollack, 2002 ). The present 

paper proposes that the brain manipulates recurrent subnetworks 

with specialized functions. Such architecture is more similar to 

biological neural networks than feedforward neural networks and 

realizes more complex computation. 

Our approach is inspired by two natural biological mechanisms: 

genetic encoding and the evolution of genetic coding. As is well- 

known, neuron development is governed by the genetic informa- 

tion encoded in deoxyribonucleic acid (DNA), and ultimately gen- 

erates the final shape of the brain. During biological development, 

in the complex process that links the DNA code to its phenotype, 

the same gene is used in many contexts. This compactness min- 

imizes the information required to describe complex individuals. 

On the other hand, evolution describes the temporal changes in 

the genetic code (DNA). Among the several mechanisms underlying 

these evolutionary changes, natural selection is very important. 

The two natural processes described above are hybridized such 

that the DNA contained in cells can also spawn cells. On the other 

hand, the changes in DNA are passed onto later generations. Mo- 

tivated by these natural processes, we propose an artificial hybrid 

system that abstracts these natural mechanisms at an acceptable 

level of complexity. 

To this end, we propose a new NEA, a biologically inspired ar- 

tificial hybrid system called Artificial Development and Evolution 

of ANNs (ADEANN). The ADEANN integrates two components. The 

first is a generative representation that represents genotypes (a 

set of production rules of a Lindenmayer system) by a compact 

IES. The IES also conducts and controls the process of mapping 

the genotypes to the phenotypes (complex neural morphologies). 

To mimic the DNA encoding scheme and enable scalability, our 

IES leverages the phenotype representation to a smaller genotype. 

Thus, the search process is carried out in a lower-dimensional solu- 

tion space. In addition, our IES implements the organizational prin- 

ciples of hierarchy, modularity, and gene reuse (allowing compact 

representation of complex phenotypes). The second component is a 

genetic algorithm (GA), a simplified representation of natural evo- 

lution. In local search problems based on GAs, a bit string is called 

a chromosome (the genotype). Each bit on the chromosome is a 

gene, and a gene set represents the parameters of a function to be 

optimized. Each string is assigned a fitness that indicates the qual- 

ity of its encoded solution (the phenotype). To improve the biolog- 

ical realism of GA, the GA in our approach evolves the generative 

representation. The evolutionary process can be regarded as the 

temporal genetic changes in the hypothetical DNAs of a popula- 

tion of individuals, regulated by an artificial selection mechanism. 

The above biological inspiration underlies the originality of our ap- 

proach. To our knowledge, we report the first attempt to generate 

recurrent neural networks from combined metaphors. 

The main contribution of our method is the genotype represen- 

tation by our proposed IES. Using a compact DNA encoding, we 

codify a parametric Lindenmayer system (L-system) with memory, 

which implements the principles of organization, modularity, repe- 

tition, and hierarchy to achieve complex neural architectures (mul- 

tilayer and recurrent networks).( Hornby & Pollack, 2002; Lee et al., 

2007 ) adopted L-systems. Although Lee et al. (2007) , used DNA 

encoding, their study was restricted to feedforward neural net- 

works, whereas our approach is extended to recurrent networks. 

In the IES used by Hornby and Pollack (2002) , the genotypes en- 

code twenty rewrite rules of an L-system. Our DNA encoding sys- 

tem encodes a parametric L-system with memory using 10 pro- 

duction rules. Therefore, our IES is more compact than Hornby and 

Pollack (2002) ’s method, and reduces the search space of all feasi- 

ble solutions. In addition, the memory mechanism in our approach 

enables the reuse of phenotypic structures (rewrite of nodes and 

connections) at different stages of development. Such reuse is an 

important capability of NEAs. 

Our ADEANN also utilizes expert knowledge of the problem to 

more efficiently search the infinite space of topologies, thus min- 

imizing the expert’s effort in the optimization. The penalty ap- 

proach implemented by the fitness function ( Eq. 5 ) automatically 

rewards the economical ANNs with stronger generalization and 

extrapolation capacities. Our L-system generates ANN topologies 

without requiring additional substrate configurations for the given 

problem. In this sense, our model automates the methodology of 

( Stanley et al., 2009 ). 

In addition, we investigate whether increasing or decreasing 

the chromosome length affects the crossover rate, and conse- 

quently the number of valid production rules. Our experiments 

confirm interference between the chromosome length, crossover 

rate, and production rules. The variable associations are discussed 

in Section 6.1 . 

The next section presents state-of-the-art methodologies and 

the findings of other authors. Section 3 presents the theoretical 

foundation of our work. The components of ADEANN and system 

operation are detailed in Section 4 . Section 5 describes the materi- 

als and methods and Section 6 presents the general experimental 

design and analyzes the computational results. A general discus- 

sion and final conclusions are presented in Sections 7 and 8 . 

2. State-of-the-art techniques 

This section discusses existing research on NEAs. Most NEAs 

use DESs, which specify every connection and node in the geno- 

type that will appear in the phenotype (ANN) . In the approaches 

proposed by Dasgupta and McGregor (1992) ; Miller et al. (1989) a 

multilayer perceptron is encoded as a directed graph, and its geno- 

type is represented by an adjacency matrix . The ANN architecture 

is evolved by the ANN itself. In other words, the chromosome en- 

codes all details of the network architecture. The weights of the 

neural network can then be optimized by gradient-based search 

approaches. These methods are simply implemented, but the size 

of the connectivity matrix scales as the square of the number of 

nodes. Thus, this representation blows up as the number of nodes 

increases. 

Stanley and Miikkulainen (2002) proposed neuro-evolution of 

augmenting topologies (NEAT). In NEAT, the DES incorporates a few 

biologically plausible entities, and alters both the weighting pa- 

rameters and structures of the networks. The flexible genetic en- 

coding of NEAT describes a network by a list of edge genes. Each 

edge gene denotes an edge between two node genes, and specifies 

the in-node, out-node, and weight of the edge. The data structure 

of NEAT, which represents the genotype, grows linearly with the 

number of edges between two nodes. 

Donate et al. (2012) proposed a new approach for auto- 

matic ANN design, and applied it to time-series forecasting us- 

ing a GA. Their method alters both the weighting parameters 

and network structures. The objective was to improve the accu- 

racy of time-series forecasting. However, they restricted their ap- 

proach to MLP, which is unsuitable for simulating temporal series 

forecasting. 

Sanchez and Melin (2014) developed a novel multi-objective 

optimization for a hierarchical genetic algorithm (MOHGA) based 

on the micro-GA approach. Their method, which optimizes modu- 

lar neural networks (MNNs), is used in iris recognition. The MO- 

HGA automatically divides the data into granules or submodules, 

and selects the data for the training and testing phases. It deter- 

mines the number of granules or submodules and the percentage 

of the training data to improve the results. The applicability of MO- 

HGA was confirmed in human recognition. The MMNs delivered 
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