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a b s t r a c t

Adaptive sampling for high dimensional manifold attracts much attention from related fields. The prin-
cipal curvature based strategy is one of the popular methods. However, principal curvature estimation
remains an open problem. Considering the relationship between geodesics and the principal curvatures
of manifold, we transform the optimized sampling density computation into the problem of uniform
sampling in the geodesic metric of manifold. Therefore, two well studied uniform sampling methods such
as Poisson disk and farthest point strategy are used. For image sampling, a 3D geometrical metric model
is built based on mean shift. Mean shift value is applied to describe the image grey information and taken
as the height of this model. Uniform sampling is implemented to generate samples with blue noise prop-
erties on the 3D model surface. Then, adaptive results are obtained when these samples are projected
back to the original 2D image. In contrast to previous methods, this strategy is flexible and can be easily
extended to unorganized points simplification or mesh coarsening. Extensive experiments demonstrated
the effectiveness of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Signal sampling is widely applied in data transmission, image
compression, mesh coarsening and etc. (Correal, Pajares, & Ruz,
2014; ElAlami, 2011; Wei & Rui, 2011). In the field of image pro-
cessing, the traditional theory is that the uniformly and irregularly
distributed samples (blue noise properties) are best for image
reconstruction (Hiller & Keller, 2001; Ostromoukhov & Jodoin,
2004). Irregularity is to avoid aliasing effect caused by regular sub-
sampling. Uniformity means that the densities of samples are
closely constant, thus providing an equal amount of information
about each region of an image. Two classic methods to obtain the
blue noise properties distribution are farthest point strategy and
Poisson disk sampling. Eldar proved that the optimized sampling
strategy for the 1D case should pick the point at the middle of
the longest unsampled line segment. The extension of the 1D opti-
mal rule to 2D case in a geometrical way results in the classic far-
thest point strategy (FPS) method (Eldar, Lindenbaum, Porat, &
Zeevi, 1997). Poisson disk sampling sets an exclusive region for
each sample to ensure that the distance between any two samples
is larger than a threshold (Cook, 1986). To achieve further high
quality blue noise distribution, the relaxation scheme iterates to
relocate the original samples (Dunbar & Humphreys, 2006; Lagae

& Dutre, 2008). The similar works can also be found in Cohen,
Shade, Hiller, and Deussen (2003) and Lagae and Dutre (2006).

Adaptive sampling is in great demands in most situations. It
usually means that more points should be sampled in the parts
of image rich in detail and fewer samples are chosen in smooth
subregions. One of the advanced strategies is the adaptive farthest
point sampling (Eldar et al., 1997), in which a local weight function
is defined for the generated voronoi vertexes rather than taking
account of the local image information when generating voronoi
vertexes. A method, preferred by many applications for its high
speed and simplicity, is to locate samples according to the local
skewness of image illumination (Ramponi & Carrato, 2001).
Samples will be concentrated in the areas with great skewness,
where image edges or sharp features exist. Other attempts include
the deformation or relaxation methods (Wei & Rui, 2011;
Ostromoukhov & Jodoin, 2004), the spectral analysis (Oeztireli,
Alexa, & Gross, 2010) and adaptive mask (Devir & Lindenbaum,
2012). The common characteristic of these methods is that they
try to perform adaptive sampling on basis of the uniform and irreg-
ular samples with blue noise properties. Their defects are that the
samples may be rather uneven and their computations will be
complex when the global optimization is applied.

From another viewpoint, the theoretical exploration about high
dimensional manifold adaptive sampling remains the hot topic in
related fields of signal processing. Based on the one-dimensional
signal sampling theorem of Shannon (Marks, 1991), Aplleboim
and Saucan demonstrated that the optimized sampling ratio for
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higher dimensional manifold should be proportional to the local
maximal principal curvature (Appleboim, Saucan, & Zeevi, 2007;
Saucan, Appleboim, & Zeevi, 2008). According to this theorem,
adaptive image sampling is achieved as follows. Firstly, the image
was divided into many unoverlapped blocks and the maximal prin-
cipal curvature of each block was assessed using finite element
techniques (Appleboim et al., 2007). Then, they obtained sparse
samples relative to the original one in each block, whilst maintain-
ing good reproduction as a whole. However, the samples’ densities
are obviously discontinuous among the adjacent blocks, which will
be disadvantageous for subsequent image processing. Meanwhile,
they pointed out that the principal curvature estimation is an open
problem and it would be beneficial if the principal curvature could
be replaced by or approximated to some extent by more accessible
intrinsic curvature measures such as the sectional/Ricci/scalar cur-
vatures (Appleboim et al., 2007). To address these problems, this
paper intends to transform the curvature based sampling strategy
into the problem of uniform sampling in the geodesic metric of the
manifold by establishing the relationship between geodesics and
curvature.

The rest of this paper is organized as follows. Section 2 presents
our sampling strategy. Section 3 describes the method of building
three dimensional geometrical metric model. The weighted geode-
sic distance computation method and two uniform sampling meth-
ods are described in Sections 4 and 5, respectively. In Section 6, the
detailed implementation issue is presented. Some experiments are
conducted and results are discussed in Section 7. Finally, conclu-
sion and possible future research are provided.

2. Our methodology

The sampling theorem in Appleboim et al. (2007) is as follows.

Theorem 1. Let
Pn;n > 2 be a connect, not necessarily compact,

smooth manifold, with finitely many compact boundary components.
Then there exists a sampling scheme of

Pn, with a proper density
D ¼ DðkðpÞÞ, where kðpÞ ¼ maxðjk1j; . . . ; jknjÞ, and k1; . . . ; kn are the
principal (normal) curvatures of

Pn, at the point p 2
Pn.

To address the difficulty in estimating the principal curvature,
we resort to the geodesics. As a typical problem in computer
graphics, geodesics is defined to be the shortest path connecting
two points on the manifold surface (Seong, Jeong, & Cohen,
2009). The geodesics from point A to B on a sphere will be the
shorter arc of the great circle passing through A and B. The length
of this arc is their geodesic distance. For all arcs connecting A and B
on the sphere surface, the curvature of the geodesic arc is among
the smallest. Moreover, the geodesic distances between any two
points on sphere are all equal only if the Euclidean distances
between two points are the same. This is simply due to the fact
that a sphere is isotropic, i.e., the principal curvatures of all points
on a sphere are equal to 1/r, where r is the radius of sphere. In the
case of the anisotropic surface, however, geodesic distances
between two points are diverse when the two points are located
in different subregions. Roughly, the more rugged the subregion
is, the longer the geodesic distance is. Meanwhile, it is obvious that
the principal curvature is proportional to the rough degree. Then,
the principal curvature is highly related to the geodesics (Seong
et al., 2009; Wen, Jiang, & Wen, 2008). I.e., the principal curvature
can be estimated by the average geodesic distance from each point
to its neighbors in the local area. Based on this fact and Theorem 1,
the following theorem can be deduced.

Theorem 2. Let
Pn;n > 2 be a connect, not necessarily compact,

smooth manifold, with finitely many compact boundary components.
Then there exists a sampling scheme of

Pn, with a proper density

D ¼ Dð�gðpÞÞ, where �gðpÞ ¼ 1
k

P
igpi, and where gpi, i ¼ 1; . . . k is the

geodesic distance from the point p 2
Pn to the point i 2

Pn; i is the
one of neighbors of p. k is the number of neighbors.

Theorem 2 means that the average geodesic distance from each
point to its neighbors can be adopted to estimate the sampling
ratio for the related subregion. Then, a natural and direct solution
to higher manifold sampling is to perform uniform sampling by
taking manifold surface distance or geodesic distance as basis (in
general uniform sampling where Euclidean distance is taken to
represent the points’ spatial distance, the sampling ratio for each
point on the 2D plane is equal). According to manifold learning,
geodesic metric represents a space, in which, the spatial distance
between any two points is defined as their corresponding geodesic
distance in Euclidean metric. Thereby, the optimized strategy is to
perform uniform and irregular sampling (blue noise properties) in
geodesic metric. Therefore, our adaptive image sampling method is
as follows.

Firstly, a new 3D geometrical metric model is established based
on mean shift in Section 3.1. For the established 3D model, the
height describes the grey variation between current point and its
neighbors. Then, by borrowing the method of geodesic distance
computation from computer graphics, two well studied uniform
sampling methods are applied on our 3D model using weighted
fast marching: Poisson disk and farthest points sampling. Finally,
non-uniform sampling results can be obtained when these samples
are projected back onto the original image. Illustrated with a 1D
case in Fig. 1, the original points (red dotes) are regularly distrib-
uted on the horizontal line and the curve’s height represents each
point’s grey difference from its neighbors. Then, we perform ran-
dom and uniform sampling along the curve to obtain three samples
A, B and C. The geodesic distances fAB and fBC are same. Whereas,
their densities are adaptive to the local grey variations after being
projected onto the original line as A0, B0 and C0.

3. 3D geometrical metric model

3.1. Mean shift

Mean shift was introduced by Fukunaga in 1975. Let S be a finite
data set in Euclidean space X and k be the kernel function of X.

k ¼
1 kxk 6 c
0 kxk > c

�
ð1Þ

The mean value at x 2 X can be described as:

mðxÞ ¼
X
s2S

kðs� xÞs
,X

s2S

kðs� xÞ ð2Þ

Fig. 1. Principle of the proposed adaptive image sampling.
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