
Expert Systems With Applications 45 (2016) 97–107

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A novel similarity/dissimilarity measure for intuitionistic fuzzy sets and

its application in pattern recognition

Hoang Nguyen∗

Department of Engineering Sciences, Gdynia Maritime University, Morska 83-87, 81–225 Gdynia, Poland

a r t i c l e i n f o

Keywords:

Intuitionistic fuzzy sets

Similarity measure

Dissimilarity

Knowledge

Fuzziness

a b s t r a c t

Among the most interesting measures in intuitionistic fuzzy sets (IFSs) theory, the similarity measure is an

essential tool to compare and determine degree of similarity between IFSs. Although there exist many simi-

larity measures for IFSs, most of them cannot satisfy the axioms of similarity measure or provide reasonable

results. In this paper, a novel knowledge-based similarity/dissimilarity measure between IFSs is proposed.

Firstly, we define a new knowledge measure of information conveyed by the IFS and prove some proper-

ties of the proposed knowledge measure. Based on the proposed knowledge measure of IFSs, we construct

a novel similarity/dissimilarity measure between IFSs and prove some properties of the proposed similarity

measure. Then we use some illustrative examples to show that the proposed measures, though simple in

concept and calculus, can overcome the drawbacks of the existing measures. Finally, we apply the proposed

similarity/dissimilarity measure between IFSs in the pattern recognition problems to demonstrate that the

proposed measure is the most reliable to deal with the pattern recognition problem in comparison with the

existing similarity measures.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In 1965, the theory of fuzzy set (FS) was first presented by Zadeh

(1965) to deal with uncertain information. As a generalization of

fuzzy set, intuitionistic fuzzy set (IFS) was introduced by Atanassov

(1986, 1994) to deal with uncertainty of imperfect information.

Since IFS presents information in terms of membership degree, non-

membership degree and hesitancy degree, it is found to be more use-

ful to deal with vagueness and uncertainty than that of FS. Many re-

searchers have been trying to find a proper measure for IFSs, in order

to evaluate and compare them. Among the most interesting measures

in IFSs theory, similarity measure is an essential tool to compare and

determine degree of similarity between two IFSs. Measuring similar-

ity between IFSs has been intensively explored for decades and many

similarity measures have been proposed in both theory and applica-

tion aspects.

As a theory approach, Chen (1995) first proposed some similar-

ity measures between vague sets. However, Hong and Kim (1999)

pointed out some unreasonable cases of Chen’s measures and pro-

posed a set of modified measures. Later on, Li and Chen (2002) pro-

posed some new similarity measures and their application in pattern

recognition problems. Nevertheless, Liu in (Liu, 2005) showed that

Li and Chen’s methods have the same drawbacks as Chen’s methods
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(Chen, 1995) and based on the distance measures proposed by Szmidt

and Kacprzyk (2000), presented several new similarity measures be-

tween IFSs. The distance measure is often used in similarity mea-

sures between IFSs by researchers. Hung and Yang (2004) adopted

the Hausdorff distance and developed several similarity measures

for linguistic evaluations. Xu and Chen (2008) gave a comprehensive

overview of the existing distance and similarity measures for IFSs and

then proposed a series of distance and similarity measures based on

the weighted Hamming distance, the weighted Euclidean distance

and the weighted Hausdorff distance. Additionally, some studies on

relationships between distance measure, similarity measure and en-

tropy measure of IFSs have been made. Zeng and Guo (2008) inves-

tigated relationships of the normalized distance, the similarity mea-

sure, the inclusion measure and entropy of interval-valued fuzzy sets.

They showed that the similarity measure, the inclusion measure and

entropy of interval-valued fuzzy sets could be induced by the normal-

ized distance of interval-valued fuzzy sets based on their axiomatic

definitions. Besides, there have been some other types of similarity

measure for IFSs. Boran and Akay (2014) proposed a new type of sim-

ilarity measure for IFSs with two parameters, expressing Lp norm and

the level of uncertainty, respectively. Subsequently, Intarapaiboon

(2014) presented a set of theoretic similarity measures and their com-

bination with a concept of lattice. Song, Zhu, and Chen (2014) pro-

posed a novel probabilistic correlation-based similarity measure on

text records with application in text matching. Montes, Pal, Janis,

and Montes (2015) introduced an axiomatic definition of divergence
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measures for IFSs, which are particular cases of dissimilarities be-

tween IFSs and investigated relationships among intuitionistic fuzzy

divergences, dissimilarities and distances.

The similarity measures of IFSs are widely used in many appli-

cations such as medical diagnosis, decision making, pattern recog-

nition and so on. While application to medical diagnosis, Ye (2011)

conducted a study of the existing similarity measures between IFSs

and proposed a cosine similarity measure, a weighted cosine simi-

larity measure of IFSs. Similarly, Maoying (2013) developed a fuzzy

cotangent similarity and weighted cotangent similarity measure be-

tween IFSs for medical diagnosis. Moreover, Davarzani and Khorheh

(2013) proposed four new distance measures for IFSs and an appli-

cation to the medical diagnosis progress in bacillus colonies recog-

nition. As an application to the decision making problem, Xu (2007)

introduced the concepts of positive-negative ideal IFS and extended

some similarity measures to solve multi-attribute decision making

problems. Subsequently, Xu and Yager (2009) proposed a new sim-

ilarity measure between IFSs and applied it for consensus analysis

in group decision making based on intuitionistic fuzzy preference

relations. To solve the pattern recognition problems, Dengfeng and

Chuntian (2002) proposed an axiomatic definition of similarity mea-

sure between IFSs based on high membership and low membership

functions. However, Mitchell (2003) showed that the Dengfeng and

Chuntian’s similarity measure had some counterintuitive cases and

modified the similarity measure based on statistical point of view.

Next, Liang and Shi (2003) also considered some examples to show

that the Dengfeng and Chuntian’s similarity measure had some un-

reasonable cases and then proposed several new similarity measures

for IFSs. Wang and Xin (2005) analyzed the relations between simi-

larity measure and distance measure and applied the distance mea-

sure to pattern recognitions. Li, Olson, and Qin (2007) gave a com-

parative analysis of several existing similarity measures between IFSs

and summarized their counterintuitive cases by examples in pattern

recognition. Papakostas, Hatzimichailidis, and Kaburlasos (2013) in-

vestigated the main theoretical and computational properties of the

existing distance and similarity measures for IFSs, as well as the rela-

tionships between them from a viewpoint of pattern recognition. In

the other hand, Zhang and Yu (2013) presented a new similarity mea-

sure between IFSs based on their transformation into the symmetric

triangular fuzzy numbers. They indicated that the proposed method

contained more information with much less loss of information. Sim-

ilarly, Chen and Chang (2015) also presented a similarity measure

based on transformation techniques and applied the proposed mea-

sure to deal with pattern recognition problems. They claimed that the

proposed similarity measure can outperform the existing similarity

measures in solving the pattern recognition problems.

Besides the fuzzy similarity and intuitionistic fuzzy similarity

measures, the probabilistic-based similarity (correlation) measures

have been widely used in real world problems, for example in im-

age clustering and partitioning (Kappes et al., 2015), in text match-

ing (Song et al., 2014) or in time-series detection (Gao, Jiang, Chen,

& Han, 2009). In (Song et al., 2014) a probabilistic correlation-based

method was successfully adopted for unstructured text record sim-

ilarity evaluation, where approximate string matching techniques

for full text retrieval, i.e. edit distance and cosine similarity fail in

cases of various word orders or incomplete information formats.

Kappes et al. (2015) applied a probabilistic correlation in image clus-

tering by using the perturbed maximum A-Posteriori (MAP) point

estimates (Bayesian inference) to calculate globally consistent ap-

proximations to marginal distributions, making it enable to close

open contour parts caused by imperfect local detection in image

partitioning. (Gao et al., 2009) successfully adopted a probabilistic-

based correlation method in the time-series detection of the large-

scale distributed system, which can discover both the spatial (across

system measurements) and temporal (across observation time)

correlations.

Although there exist several similarity measures between IFSs,

many unreasonable cases are made by the such measures as pre-

sented in (Li et al., 2007; Szmidt & Kacprzyk, 2013; Tan & Chen,

2014). Li et al. (2007) showed that there always are counterintu-

itive examples in pattern recognition among these existing sim-

ilarity measures and pointed out a reason of this drawback as

non-considering hesitancy degree in IFSs. Szmidt and Kacprzyk

(2013) analyzed several geometric similarity measures between the

IFSs and concluded that the symmetry of the complement elements

in description of the IFS element is necessary to attain intuitively re-

liable results. Tan and Chen (2014) analyzed most of published re-

searches on similarity measures comprehensively and proved that

all existing similarity measures have counterintuitive cases. Inspired

by this, we present in this paper a new similarity measure between

IFSs, based on the new knowledge measure that makes it capable

to evaluate differences between IFSs and provides reliable results.

The performance evaluation of the proposed measure is shown in

illustrative examples, assessing how much the measure is reason-

able, and indicating the accuracy of the measure in comparison with

others.

2. Basic concepts and a review of the existing similarity measures

for IFSs

In 1986, Atanassov generalized the concept of fuzzy sets given by

Zadeh (1965) by using membership and non-membership functions

to deal with uncertainty of imperfect information. For any elements x

of the finite universe of discourse X, an IFS A is defined by (Atanassov,

1986):

A = {〈x,μA(x), νA(x)〉|x ∈ X}, (1)

where the functions μA: X → [0, 1] and νA: X → [0, 1] denote a degree

of membership and degree of non-membership of the element x ∈ X

to the set A, respectively, such that:

0 ≤ μA(x) + νA(x) ≤ 1, ∀x ∈ X. (2)

To measure hesitancy degree of an element to an IFS, Atanassov

introduced a third function given by:

πA(x) = 1 − μA(x) − νA(x), ∀x ∈ X, 0 ≤ πA(x) ≤ 1, (3)

which is also called the intuitionistic fuzzy index or the hesitation

margin. If πA(x) = 0, ∀x ∈ X , then μA(x) + νA(x) = 1 and the intu-

itionistic fuzzy set A is reduced to an ordinary fuzzy set.

The concept of a complement of an IFS A, denoted by Ac is defined

as (Atanassov, 1986):

Ac = {〈x, νA(x),μA(x), πA(x)〉|x ∈ X}. (4)

For any IFSs A and B in X, the following operations can be found in

(Atanassov, 1986, 1999):

(D1) A⊆B iffμA(x) ≤ μB(x), νA(x) ≥ νB(x), ∀x ∈ X;

(D2) A = B i f f A ⊆ B and B⊆A;

(D3) A ∪ B = {〈x, max (μA(x),μB(x)), min(νA(x), νB(x))〉|x ∈ X};

(D4) A�B called A less fuzzy than B, i.e. for ∀x ∈ X,

if μB(x) ≤ νB(x) then μA(x) ≤ μB(x) and νA(x) ≥ νB(x);

if μB(x) ≥ νB(x) then μA(x) ≥ μB(x) and νA(x) ≤ νA(x).

Szmidt and Kacprzyk introduced intuitionistic fuzzy entropy mea-

sure, which is an extension of the De Luca and Termini’s axioms for

fuzzy sets. The axioms of entropy measure for IFSs were formulated

as follows (Szmidt & Kacprzyk, 2001):

Let IFS(X) denotes the set of all IFSs in X, a map E: IFS(X)→[0,1]

is called the intuitionistic fuzzy entropy, if it satisfies the following

properties:

(D5) E(A) = 0 iff A is a crisp set;

(D6) E(A) = 1 i f f μA(x) = νA(x), ∀x ∈ X;
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