
Expert Systems With Applications 45 (2016) 161–171

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Nonlinear curve fitting to stopping power data using RBF neural

networks

Michael M. Li∗, Brijesh Verma

School of Engineering and Technology, Central Queensland University, Rockhampton Qld 4701, Australia

a r t i c l e i n f o

Keywords:

Radial basis function

Neural network

Curve fitting

Stopping power

a b s t r a c t

This paper presents a novel approach for fitting experimental stopping power data to a simple empirical for-

mula. The unknown complex nonlinear stopping power function is approximated by a Radial Basis Function

(RBF) neural network with an additional linear neuron. The fitting coefficients are determined by learning al-

gorithms globally. The experiments using the proposed method have been conducted on a benchmark dataset

(titanium heat) and a set of stopping power data with implicit noise (MeV projectiles of Li, B, C, O, Al, Si, Ar, Ti

and Fe in elemental carbon materials) from high energy physics measurements. The results not only showed

the effectiveness of our method but also showed the significant improvement of fitting accuracy over other

methods, without increasing computational complexity. The proposed approach allows us to obtain a fast

and accurate interpolant that well suits to the situations where no stopping power data exist. It can be used

as a standalone method or implemented as a sub-system that can be efficiently embedded in an intelligent

system for ion beam analysis techniques.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In many applications of engineering and science, experimentally

measured data are best analyzed by fitting data to an empirical curve

or model using nonlinear regression. For example, experimental data

on the change in blood pressure of an animal with respect to the drug

doses injected are analyzed by fitting them into a curve – the Hill

model (a three-parameter logistical equation) and therefore the rele-

vant physicochemical reaction characteristics is determined. The goal

of curve fitting is to find a parameterized function that is as close

as possible to containing all the data points. Such a parameterized

function is also called as a regression curve. It empirically describes

the relationship between data and its approximate representation

of either an underlying physical process or a real system. The built

empirical model is subsequently used to deduce responses of the

system, or to predict the data that have yet to be measured. The pro-

cess of empirical curve fitting often requires a selection of an ap-

propriate functional form (i.e. a parameterized function) or a set of

basis functions and a determination of suitable parameters. The se-

lections of an appropriate functional form depend on a good under-

standing of the underlying science, the observation of data distri-

butions and the properties of the problem. While a list of built-in

functional forms, including the logistic, Weibull, and Gompertz,

is available in some software packages for nonlinear curve fitting
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(Crawley, 2007), they or their combinations don’t always best de-

scribe a complex process in real world applications. On the other

hand, determination of fitting parameters can be made by an op-

timization process over a weighted least-square or non-weighted

least-square, in which the sum of the squares between the observed

data and those fitted by the model is minimized. If the functional

form to be found is linearly dependent on the parameters, the op-

timization problem of parameters is pretty easy. Nonetheless, when

the proposed functional form nonlinearly relies on the unknown pa-

rameters (for example, a four-parameter Weibull function), determi-

nation of optimal parameters normally needs a lengthy iterative pro-

cess starting from an initial guess. The initial value largely affects the

convergence of the iterative process. Without a good initial guess the

iterative procedure may never converge towards a correct solution.

The study of empirical fitting of stopping power data has been

germane to many practical applications particularly in material and

surface analysis techniques. The stopping process is an energy loss

process by which energetic particles are slowed down during their

passage through matter. It involves complicated micro-interactions

between an incident particle with the nuclei and electrons of the

substance along their paths. Accurate stopping power data are essen-

tial for ion-beam material analysis techniques and radiation therapy

(Bird & Williams, 1989; Paul, 2012). For example, in the application

of quantitative analytical techniques like Rutherford Backscattering

Spectroscopy and Elastic Recoil Detection Analysis, it is the stop-

ping power that determines the depth scale in analysis and hence re-

solves the accuracy of analysis results. Another area with increasingly
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growing uses of accurate stopping power data is radiological diag-

nosis and treatment. Like using standard photon beams (X-rays and

gamma rays) in the ordinary radiological treatment, energetic heavy

ion beam has been applied for cancer treatments in recent years

(Krämer et al., 2000; Schulz-Ertner & Tsujii, 2007). When patients

are irradiated with ion beams, energy is deposited into their body.

The procedure is called the dose delivery. Stopping power data play

a critical role in the accurate dose delivery that efficiently controls

the treatment effect. The committee of International Commission on

Radiological Units and Measurements (ICRU) has constantly updated

a series of stopping power tabulations from protons, alpha particles

and various heavy ions (ICRU, 1993; ICRU, 2005).

Despite much detailed experimental work and theoretical compu-

tations, it is still impossible to provide high precision stopping power

data for every elemental projectile/target combination in the inter-

ested energy range since the number of such a combination is as

many as up to a few thousands. It is also a common scenario that

when a researcher needs to use a set of stopping power data related

to a given projectile passing through a certain matter for an appli-

cation such as ion beam analysis or materials modification, the re-

quired data may not exist. It has been highly anticipated that more

data tabulations by accurate fitting are made available for a variety

of projectile and target combinations. In past decades, many works

have been carried out to build reliable empirical models for heavy

ion stopping power data. These models were mainly based on classi-

cal nonlinear least-square algorithms incorporated quantum theory

(Konac, Klatt, & Kalbitzer, 1998; Paul & Schinner, 2001, 2003; Weijers,

Duck, & O’Connor, 2004; Ziegler, Biersack, & Littmark, 1985; Ziegler,

Biersack, & Ziegler, 2008). Overall these studies have led up to dis-

coveries of a number of parameterized empirical formulae that are

able to predict stopping power data with varying level of agreement

to experimental data.

Mathematically, curve fitting and interpolation is one class prob-

lem of two major class function approximation problems, where the

unknown function is approximated by a specific class function (such

as polynomial, exponential, and rational) or a set of basis functions

(for example radial basis functions), given a set of data points. Inter-

polations based on Radial Basis Functions (RBF) have been studied for

a long time. Hardy (1971) innovatively applied the multi-quadratics

function to deal with surface fitting on geographical data and sub-

sequently proved the multi-quadratics related to a consistent solu-

tion of the biharmonic potential problems. Franke (1982) surveyed

various numerical algorithms on the typical benchmark data inter-

polation problems and concluded that the multi-quadratics RBF and

thin-plate spline RBF have the superior performance in terms of ef-

ficiency and accuracy. Kansa (1990, 2000) proposed the idea of us-

ing RBF collocation scheme for solving partial differential equations

and pioneered a class of meshless technique. More recently, Schaback

and Wendland (2000) introduced an adaptive technique using com-

pactly supported RBFs for solving the large scale sparse linear system

problems. In past decades, RBF-based interpolations have been suc-

cessfully used to solve numerous practical problems in science and

engineering (Chen, Hon, & Schaback, 2007; Larsson & Fornberg,

2003; Cordero-Gracia, Gómez, & Valero, 2014; Shankar & Olson 2015;

Wendland, 2010).

However, the above mentioned RBF interpolation method is not

directly applicable for curve fitting problems as this method deals

with the interpolating function passing through all data points and

it may produce an anomalous interpolation surface due to the over-

determined problem, in which the number of data points is much

larger than the number of degrees of freedom of the underlying phys-

ical system. In addition, for a noisy dataset, the exact solution of the

interpolation problem often leads to an oscillating function that may

give a misleading result. To overcome these difficulties, Broomhead

and Lowe (1988) proposed to reformulate the RBF method by remov-

ing the restriction of exact interpolation and setting up a two-layer

network architecture, where each radial basis function is served as

a computation unit in the hidden layer. In this adaptive model, the

training phase of network learning process is treated as the optimiza-

tion of a fitting procedure for a desired surface, while the general-

ization of network is considered as the interpolation process of test

data. Following the reformulation in the adaptive network model,

RBF method rapidly gained renewed interests in computational in-

telligence. With a series of subsequent investigations, it has been

proved that RBF networks have capability to approximate any con-

tinuous function to any degree of accuracy (Park & Sandberg, 1991;

Poggio & Girosi, 1990). A class of RBF network can achieve univer-

sal approximation if the RBF is continuous and integratable (Park &

Sandberg, 1991). Poggio and Girosi (1990) have reported that RBF

networks possess the property of the best approximation which is

not shared by multilayer perceptrons networks. Due to its superior

capability of function approximation and a simple architecture, the

RBF neural network has been successfully applied in many fields.

The representative applications include system identification (Chen,

Billings, & Grant, 1992), face recognition (Yang & Paindavoine, 2003),

predictions (Han, Chen, & Qiao, 2011; Yilmaz & Kaynar, 2011), an-

tenna design (Chen, Wolfgang, Harris, & Hanzo, 2008), and com-

puter vision and graphics (Cho & Chow, 2001; Tsai & Shih, 2006).

The performance of RBF neural network has been impressive in these

applications. For example, Howell and Buxton (1998) compared RBF

networks with other neural network approaches on face recognition

experiments involving low-resolution video data and found that the

RBF neural network had only 5–9% errors. More recently advances

in RBF neural network theory and applications have been mainly fo-

cused on the improvement of algorithm efficiency and development

of hybrid algorithms for various task-dependent applications (Chen

et al., 2008; Constantinopoulos & Likas, 2006; Han et al., 2011; Huang,

Saratchandran, & Sundararajan, 2005; Yoo, Oh, & Pedrycz, 2015; Yu,

Reiner, Xie, Bartczak, & Wilamowski, 2014). For example, Yu et al.

(2014) presented an offline algorithm for incrementally construct-

ing and training RBF networks by considering an error correction

procedure in each iteration. The proposed approach was evaluated

on several benchmark datasets. The results showed the robustness

of the method and significantly reduced the training time. It out-

performed other commonly used algorithms for training the RBF

networks. Yoo et al. (2015) proposed a hybrid method of incorporat-

ing the Principal Component Analysis (PCA) algorithm and RBF net-

works and applied to a face recognition task. In their studies, the

PCA algorithm was considered to reduce dimensionality of face im-

ages while an optimized RBF network was used to identify the re-

lated pattern linked to each person. The proposed hybrid scheme

obtained some unique characteristics with a better recognition

rate.

Although RBF neural networks are powerful tools, one of their lim-

itations in practice for solving a specific problem may become evi-

dent. To guarantee its best approximation property, the number of

basis function should be chosen as sufficiently large. This is normally

not desirable in curve fitting problems because the ultimate aim of

curve fitting usually is to find a simple empirical equation with as few

as possible number of parameters. If a limited number of nodes in the

network is considered, the boundary behavior of the function may be

deteriorated due to the localized effect from the superposition of lim-

ited number of Gaussian functions. To address this existing challenge,

an extra linear neuron is introduced in the RBF network architecture.

The main idea is to construct an approximation for a function by su-

perposition of Gaussian basis functions with a linear term correction.

This will efficiently balance the requirement of number of basis func-

tion and the fitting accuracy, which is one of the main contributions

of this study.

The proposed RBF neural network with an additional linear neu-

ron is investigated for fitting stopping power curves. The stopping

power is the mean energy loss per unit of path length when the
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