
Expert Systems With Applications 45 (2016) 385–399

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Multi-objective kernel mapping and scheduling for morphable

many-core architectures

Nuno Neves a,c, Rui Neves b,c, Nuno Horta b,c, Pedro Tomás a,c, Nuno Roma a,c,∗

a INESC-ID, Rua Alves Redol, 9, 1000–029 Lisboa, Portugal
b Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049–001 Lisboa, Portugal
c Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049–001 Lisboa, Portugal

a r t i c l e i n f o

Keywords:

Optimization

Design methodologies

Multi-core

Reconfigurable architectures

Run-time and dynamic reconfiguration

Energy efficiency

a b s t r a c t

A new optimization framework to maximize the performance and efficiency of morphable many-core ac-

celerators is proposed. The devised methodology supports the co-existence of multiple optimization goals

and constraints (e.g., computational performance, power, energy consumption and runtime reconfiguration

overhead) by relying on a design space exploration approach based on a convenient adaptation of a Multi-

Objective Evolutionary Algorithm. In accordance, the proposed algorithm allows the generation of a compre-

hensive set of execution plans, specifically targeting an efficient runtime adaptation of the processing ele-

ments instantiated in morphable slots of the processing structure. The conducted experimental evaluation

shows significant gains in terms of the attained performance and energy efficiency when considering both

highly parallel and data dependent applications, achieving peak power dissipation and energy consumption

reductions as high as 54% and 45%, respectively.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing demand for computational processing power that

has been observed along the last decade has driven the development

of heterogeneous systems, typically composed of a host General Pur-

pose Processor (GPP) and one or more accelerating devices, such as

Graphical Processing Units (GPUs), Field-Programmable Gate Arrays

(FPGAs) or Application Specific Integrated Circuits (ASICs), each typi-

cally integrating multiple processing elements (PEs). While these sys-

tems already allow for significant application acceleration, it is of fun-

damental importance to improve the offered processing efficiency,

while complying with the strict power and energy constraints of both

embedded and high performance computing systems. In particular,

although it has been widely recognized that energy consumption can

lead to important constraints in the processing performance of mo-

bile computing platforms, the observed divergence between device-

level energy-efficiency gains and transistor-density (Esmaeilzadeh,

Blem, St Amant, Sankaralingam, & Burger, 2011) may require that,

in future computing systems, some of the transistors must remain

dimmed or powered down most of the time. A solution for such a

∗ Corresponding author at: ECE Department, INESC-ID, IST, Universidade de Lisboa,

Rua Alves Redol, 9, 1000–029 Lisboa, Portugal. Tel.: +351213100311.

E-mail addresses: Nuno.Neves@inesc-id.pt (N. Neves), Rui.Neves@lx.it.pt

(R. Neves), Nuno.Horta@lx.it.pt (N. Horta), Pedro.Tomas@inesc-id.pt (P. Tomás),

Nuno.Roma@inesc-id.pt (N. Roma).

problem relies on the exploitation of runtime dynamic morphing of

processor architectures, by clock/power gating unused hardware re-

sources, by applying Dynamic Voltage and Frequency Scaling (DVFS)

techniques or by relying on fine- or coarse-grained hardware recon-

figuration (Petrica, Izraelevitz, Albonesi, & Shoemaker, 2013). In par-

ticular, by dynamically adapting the PEs architectures to the applica-

tion kernels and by adopting a carefully management of the available

processing resources, not only in terms of its execution, but also in

terms of its energy requirements, it is possible to attain high comput-

ing performance and energy efficiency (Venkatesh et al., 2011).

However, while several programming frameworks have already

been developed with the specific purpose of efficiently exploiting

GPUs for general purpose computation (CUDA/OpenCL), morphable

hardware accelerators have not received so much attention, spe-

cially those deployed on reconfigurable technology. In fact, although

some existing frameworks (e.g. Xilinx Vivado, Altera SDK for OpenCL,

Maxeler Technologies’ MaxCompiler) already provide the means for

translating kernels into low-level hardware implementations and for

mapping them into FPGAs, the ability for runtime morphing the ar-

chitectures is usually not taken into account. As a consequence, the

development of a new framework capable of efficiently and dynami-

cally mapping and scheduling an application’s kernels into the PEs of

a morphable accelerator is still highly required.

The herein proposed framework tackles the described problem

by incorporating a design space exploration (DSE) tool to derive,

in compile-time, a set of execution plans that describe not only an

http://dx.doi.org/10.1016/j.eswa.2015.10.004

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.10.004&domain=pdf
mailto:Nuno.Neves@inesc-id.pt
mailto:Rui.Neves@lx.it.pt
mailto:Nuno.Horta@lx.it.pt
mailto:Pedro.Tomas@inesc-id.pt
mailto:Nuno.Roma@inesc-id.pt
http://dx.doi.org/10.1016/j.eswa.2015.10.004


386 N. Neves et al. / Expert Systems With Applications 45 (2016) 385–399

efficient mapping of tasks to PEs, but also the scheduling of those

mappings to morphable processing hardware. Furthermore, by tak-

ing advantage of a multi-objective optimization (MOO) technique, it

is possible to generate multiple execution plans, each establishing a

different compromise between the application’s performance, sys-

tem power consumption and energy efficiency. Hence, by carefully

selecting (in runtime) the most appropriate execution plan and by

considering the time and energy overheads resulting from the com-

munication and the reconfiguration/adaptation process, it is possible

to make an application execution as adaptive and energy-efficient as

possible.

To validate the proposed algorithm and scheduling methodolo-

gies, they were conveniently integrated into a previously developed

morphable many-core accelerator, managed and controlled by an in-

tegrated Hypervisor module. The conducted experimental evalua-

tion in a reconfigurable hardware scenario shows that the proposed

multi-objective optimization approach provides significant energy

savings under a set of both static and dynamic application workloads,

reaching gains as high as 45%.

The remaining of the manuscript is organized as follows: Section 2

summarizes the background and the related work and enumerates

the contributions of the herein proposed approach; Section 3 intro-

duces a generic model of the considered processing platform com-

posed by multiple reconfigurable/adaptable accelerators, together

with the presentation of its underlying application specifications;

Section 4 describes the proposed DSE algorithm, including the def-

inition of the optimization goals and all of the intervening operators

included in the adopted Objective Evolutionary Algorithm (MOEA);

the algorithm is then validated in Section 5, by considering two case

studies; finally, Section 6 concludes the manuscript by discussing and

addressing the main contributions and achievements.

2. Related work

The new optimization framework that is herein proposed rep-

resents a considerable extension of other MOO design approaches

that have been presented in the literature to optimize highly hetero-

geneous many-core processing systems. Some examples of related

contributions comprise: code optimization (Balaprakash, Tiwari,

& Wild, 2014; Neugebauer, Marwedel, & Engel, 2015); static and

dynamic task scheduling (Behnamian, Zandieh, & Ghomi, 2009;

Camelo, Donoso, & Castro, 2011; Cheng, Shiau, Huang, & Lin, 2009;

Daoud & Kharma, 2011; Sheikh & Ahmad, 2013; Xu, Li, Hu, & Li, 2014);

and a number of DSE approaches based on high-level and system-

level synthesis (Erbas, Cerav-Erbas, & Pimentel, 2006; Gschwandtner,

Durillo, & Fahringer, 2014; Holzer, Knerr, & Rupp, 2007; Krishnan

& Katkoori, 2006), application mapping in multi-processor systems

(Mariani et al., 2010; Palermo, Silvano, & Zaccaria, 2009) and hetero-

geneous systems (Erbas, Erbas, & Pimentel, 2003), as well as routing

and communication topology optimizations (Glaß, Lukasiewycz,

Wanka, Haubelt, & Teich, 2008). However, although some of these

solutions already target morphable processing architectures, they

do not take advantage of the runtime reconfiguration/adaptation

capabilities of the underlying hardware support.

On the other hand, some DSE algorithms have been proposed

to specifically target dynamically reconfigurable platforms. In

Miramond and Delosme (2005), it is proposed a tool that defines

different contexts for reconfigurable circuits, which are dynamically

switched in runtime through partial reconfiguration. The underlying

tasks are then assigned to each configuration through spatial and

temporal partitioning, by using a local search algorithm. In Czarnecki

and Deniziak (2008), it is proposed the usage of conditional task

graphs, allowing to model mutually exclusive tasks. According to this

algorithm, all tasks are initially assigned to only one GPP module and

new solutions are produced using iterative improvement methods.

Also based on conditional task graphs, the Evolutionary Algorithm

(EA) proposed in Shang and Jha (2002) is used to determine the

amount of used resources and to assign tasks to PEs, followed by a

re-mapping and scheduling algorithm that makes use of the dynamic

reconfiguration capabilities of FPGAs. Another algorithm targeting

multi-mode systems is proposed in Wildermann, Reimann, Ziener,

and Teich (2011), where it is assumed that the different operating

modes can share the same hardware resources by means of partial

reconfiguration. A symbolic encoding is also proposed, by combining

a SAT solver and an MOEA, allowing the system synthesis for allo-

cation, binding and placement of partially reconfigurable modules,

both temporally and spatially.

Although the above referred frameworks and algorithms al-

ready take advantage of dynamic reconfiguration, they are mostly

focused in HW/SW co-synthesis and HLS problems. In contrast,

the herein proposed approach considers CPU-coupled morphable

heterogeneous accelerators integrating a number of predefined

reconfigurable/adaptable regions, allowing the dynamic morphing

of their PE architectures according to energy and runtime execution

requirements.

2.1. Background

A rather preliminary approach to the herein proposed optimiza-

tion strategy was initially considered in the morphable many-core

acceleration platform proposed in Neves, Mendes, Chaves, Tomás,

and Roma (2015a). Such adaptive processing structures is managed

by an Hypervisor module, implemented either in the host computer

or locally in the accelerator device. The Hypervisor is responsible

for permanently monitoring the accelerator’s PEs execution in order

to define convenient scheduling decisions (in real-time), and to

issue appropriate reconfiguration commands that adapt the archi-

tecture of each individual morphable region to the instantaneous

characteristics and requirements of the application under execution.

Moreover, the devised Hypervisor module can also deploy runtime

optimization policies to further promote the performance and en-

ergy efficiency, thus guaranteeing an extended battery life and/or

minimum power consumption (e.g. in mobile computing platforms),

or minimum energy costs in high performance computing clusters.

Such devised optimization policies are based on intrinsic and/or

external requirements that may demand the system to reduce the

power consumption in runtime (e.g. by turning off processing cores)

or to ensure a minimum and stationary performance level, while

complying with strict peak power or energy constraints. Neverthe-

less, such an approach incurs in significant overheads that affect the

overall efficiency of the platform, since the Hypervisor is required to

perform a significant amount of operations in runtime, namely: (i)

read the performance counters of the PEs; (ii) process the obtained

information through the set of optimization policies; and (iii) sched-

ule and trigger the appropriate reconfiguration commands to the

accelerator.

2.2. Contributions

The optimization methodology that is now proposed comple-

ments the Hypervisor-based platform proposed in Neves et al.

(2015a) with a comprehensive set of DSE optimization tools, exe-

cuted at compile time. These tools provide a new abstraction level of

the underlying morphable processing structures, particularly fitted

to the application kernels being migrated from the CPU. With such

an approach, the Hypervisor can be provided with further informa-

tion about the application behavior and requirements, thus mitigat-

ing the implicit overheads, and even allowing the anticipation of the

required reconfigurations and scheduling decisions, thus hiding the

adaptation procedure behind the application execution.



Download English Version:

https://daneshyari.com/en/article/382469

Download Persian Version:

https://daneshyari.com/article/382469

Daneshyari.com

https://daneshyari.com/en/article/382469
https://daneshyari.com/article/382469
https://daneshyari.com

