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a b s t r a c t

Discretization is the process of converting numerical values into categorical values. There are many existing

techniques for discretization. However, the existing techniques have various limitations such as the require-

ment of a user input on the number of categories and number of records in each category. Therefore, we

propose a new discretization technique called low frequency discretizer (LFD) that does not require any user

input. There are some existing techniques that do not require user input, but they rely on various assump-

tions such as the number of records in each interval is same, and the number of intervals is equal to the

number of records in each interval. These assumptions are often difficult to justify. LFD does not require any

assumptions. In LFD the number of categories and frequency of each category are not pre-defined, rather

data driven. Other contributions of LFD are as follows. LFD uses low frequency values as cut points and thus

reduces the information loss due to discretization. It uses all other categorical attributes and any numerical

attribute that has already been categorized. It considers that the influence of an attribute in discretization

of another attribute depends on the strength of their relationship. We evaluate LFD by comparing it with six

(6) existing techniques on eight (8) datasets for three different types of evaluation, namely the classification

accuracy, imputation accuracy and noise detection accuracy. Our experimental results indicate a significant

improvement based on the sign test analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Importance of discretization

Organizations use Data Mining and Knowledge Discovery algo-

rithms for making better decisions. A data mining algorithm extracts

interesting patterns (such as logic rules and clusters) that could oth-

erwise be extremely difficult for us to extract (Pyle, 1999; Van Hulse,

Khoshgoftaar, & Huang, 2007).

Many data mining algorithms can only deal with categorical at-

tributes and are unable to handle numerical attributes (Agrawal &

Srikant, 1994; Dougherty, Kohavi, & Sahami, 1995; Liu, Hussain, Tan, &

Dash, 2002). However, natural datasets often contain both numerical

and categorical attributes. The data mining algorithms generally dis-

cretize/categorize numerical attributes and thereby consider them as

categorical attributes in order to perform various data mining tasks.

Therefore, discretization techniques (Kurgan & Cios, 2004; Yang &

Webb, 2009) are considered to be crucial in various fields of data min-
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ing. For example, the Naive-Bayes (Yang & Webb, 2009) and Apriori

(Agrawal & Srikant, 1994) algorithms can only handle categorical at-

tributes and therefore they need to discretize numerical attributes.

Each of them belongs to the top 10 data mining algorithms (Wu et al.,

2008).

Some other data mining algorithms can handle numerical at-

tributes. However, often the efficiency and effectiveness of a data

mining algorithm increases when it makes use of a discretization al-

gorithm (Garcia, Luengo, Saez, Lopez, & Herrera, 2013; Yang & Webb,

2009). Discretization is also considered to be an important part of

data preprocessing and cleansing that is likely to improve the qual-

ity of the results obtained by various data mining algorithms (Han &

Kamber, 2006).

Discretization can also be useful for data cleansing tasks including

missing value imputation and corrupt data detection (CDD). For ex-

ample, missing value imputation techniques such as DMI (Rahman &

Islam, 2011) and FIMUS (Rahman & Islam, 2014), and CDD techniques

such as CAIRAD (Rahman, Islam, Bossomaier, & Gao, 2012) rely on dis-

cretization algorithms.

1.2. The problem statement and notations

A discretization algorithm converts a numerical attribute into

a categorical attribute with a set of mutually exclusive intervals
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(Kurgan & Cios, 2004; Yang & Webb, 2009). The intervals are sepa-

rated by cut-points and each interval has a width w. For example, a

numerical attribute called Age can be converted into a categorical at-

tribute with a number of intervals such as [10–14], (14–19], and (19–

24]. The width w of an interval here is 5 and the cut points are 10, 14,

19 and 24. Finding the accurate number of intervals t, and the right

width w of each interval is a challenging task (Garcia et al., 2013).

We consider a dataset DF as a two dimensional table where

rows represent records R = {R1, R2, . . . RN} and columns represent at-

tributes A = {A1, A2, . . . AM}. The size of the dataset is the number

of the records |DF | = |R| = N. The attributes can be either numer-

ical or categorical. A numerical attribute such as Age contains nu-

merical/continuous values such as 33 and 34. A categorical attribute

such as City contains categorical values such as Sydney and Bathurst.

Categorical values do not have any natural ordering. Let, An ⊂ A be

the set of numerical attributes and Ac ⊂ A be the set of categorical

attributes. We represent the number of numerical attributes in DF

by n (that is |An| = n) and the number of categorical attributes by

c (that is |Ac| = c). If the jth attribute Aj is numerical then the do-

main of the attribute can be represented as A j = [low, up], where

low is the lowest limit and up is the highest limit of the domain. If

the attribute is categorical then the domain can be represented as

A j = {a j1, a j2, . . . a jk}, where the domain has k different values i.e.

|A j| = k. The domain size of a numerical attribute (such as “Number

of Children”) is |Ai| = (up − low) and the domain size of a categorical

attribute |Aj| is the number of distinct values of the attribute.

Often an attribute Aclass out of the set of the categorical attributes

Ac (i.e. Aclass ∈ Ac) is considered to be the class attribute (Quinlan,

1986; 1993; 1996) of a dataset. A class attribute (also known as la-

bels of the records) can be used to classify the records. For example,

the attribute “Diagnosis” can be a class attribute of a patient dataset

having information on a number of patients.

We consider that Rij is the jth attribute value of the ith record. By a

“missing value” we mean that Rij is missing/absent for some reasons.

We denote a missing value by a “?” mark, i.e. Ri j =?. By a “noisy value”

(or “corrupt value”) we mean that the Rij value is incorrectly recorded

in DF. Incorrect values can be recorded in a dataset due to various

reasons including machine malfunctioning and human error.

A discretization process converts a numerical attribute Aj into

a categorical attribute by introducing a set of categories through

a set of cut-points Pj = {Pj1, Pj2, . . . Pjq}, where Pj1 and Pjq are the

lowest and the highest values of Aj, respectively. Based on the

cut points the categories/intervals for Aj can be defined as I =
{[Pj1, Pj2], (Pj2, Pj3], . . . , (Pjq−1, Pjq]}.

1.3. Some existing algorithms and their limitations

A number of discretization techniques have been proposed in the

literature (Ching, Wong, & Chan, 1995; Fayyad & Irani, 1993; Kim &

Han, 2000; Kurgan & Cios, 2004; Liu & Setiono, 1997; Liu, Wong,

& Wang, 2004; Mehta, Parthasarathy, & Yang, 2005; Wong & Chiu,

1987; Yang & Webb, 2009). There are various limitations of the ex-

isting techniques (Garcia et al., 2013) and therefore room for further

improvement.

An early discretization algorithm called equal width discretizer

(EWD; Wong and Chiu, 1987) divides a numerical attribute into t in-

tervals/categories, where the intervals have equal width w. The num-

ber of intervals t is user defined. The width of each interval is calcu-

lated as w = up−low
t , where low is the lowest value and up is the high-

est value of the domain of the attribute. The intervals for Aj in EWD

are calculated as I = {[low, low + w], (low + w, low + 2w], . . . , (low +
(t − 1)w, up]}. While each interval has the equal width, the number

of actual values in an interval can of course be different to the number

of values in another interval.

Another existing algorithm called equal frequency discretizer

(EFD; Wong and Chiu, 1987) divides the values of a numerical

attribute into t intervals in such a way so that each interval contains

an equal number of values. The number of values (or frequency), f of

each interval is calculated as f = N
t , where N is the number of records

in DF. In this case the widths of the intervals can be different. Like

EWD, EFD also requires a user defined number of intervals t. It can be

a difficult task for a user to estimate the accurate number of intervals

in advance (Garcia et al., 2013).

Instead of a user defined number of intervals t, FFD (Yang & Webb,

2009) requires a user defined number of records (i.e. frequency) f for

each interval. The number of interval t is then calculated as t = N
f
,

where each interval contains a fixed number of records. It is also dif-

ficult for a user to guess a suitable/appropriate frequency f of each

interval.

A recent algorithm called proportional discretizer (PD; Yang and

Webb, 2009) does not require a user input on either the number of in-

tervals t or the frequency f of each interval. PD suggests/assumes that

the number of intervals t and the number of records (in each interval)

f should be equal (i.e. t = f ). Based on the assumption, the desired t is

then obtained from the relations t × f = N and t = f, where N is the

total number of records of a dataset. However, the equality assump-

tion (i.e. t = f ) is questionable. It is difficult to justify the reason why

a sensible discretization can be carried out considering t = f for all

datasets.

FIMUS (Rahman & Islam, 2014) therefore drops the equality as-

sumption. It automatically finds the value of t considering t =
√|A j|,

where |Aj| is the domain size of Aj. The technique then divides the

values of Aj into t intervals, where the width of each interval is equal.

The width w is calculated as w = up−low
t . However, the assumptions

of FIMUS also suffer from lack of justifications.

None of the above algorithms consider the influence of a class at-

tribute (Aclass) while discretizing a numerical attribute. Since a class

attribute classifies the records it has an influence/relationship with

the other attributes. The influence of the class attribute is considered

by a recent discretization algorithm called class attribute interdepen-

dence maximization (CAIM; Kurgan and Cios, 2004) while identifying

the cut-points of a numerical attribute. The technique aims to dis-

cretize numerical values in such a way so that the classification and

prediction accuracy of a classifier built from the discretized dataset

improves.

The technique initially considers all distinct values of a numeri-

cal attribute as the candidate cut-points. It then considers the lowest

and highest candidates/values as the first two cut points. For each of

the remaining candidates it then calculates the CAIM value (Kurgan

& Cios, 2004) which indicates how well the discretization of the at-

tribute using the candidate cut point agrees with the categories of

the class attribute. The candidate having the maximum CAIM value

is considered to be the third cut-point. The technique then computes

the CAIM values for each of the remaining candidates and selects the

one having the maximum CAIM value as the fourth cut point. The

process of computing the CAIM values and selecting the candidate

with the highest CAIM value as a cut point continues as long as the

maximum CAIM value of the current iteration is higher than the max-

imum CAIM value of the previous iteration. It was shown (Kurgan &

Cios, 2004) that the technique outperforms six other discretization

algorithms.

1.4. The proposed algorithm: LFD

We argue that existing discretization techniques including EWD,

EFD, FFD, PD, FIMUS and CAIM have a fundamental flaw in the basic

concept. These techniques allow a numerical value (of an attribute)

with high frequency to be selected as a cut point. By “high frequency”

of a numerical value we mean that the value has a high number of

appearances in the dataset for the attribute. That is, many records
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