
A variable size mechanism of distributed graph programs and its
performance evaluation in agent control problems

Shingo Mabu a,⇑, Kotaro Hirasawa b, Masanao Obayashi a, Takashi Kuremoto a

a Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan
b Information, Production and Systems Research Center, Waseda University, Hibikino 2-2, Kitakyushu, Fukuoka 808-0135, Japan

a r t i c l e i n f o

Keywords:
Evolutionary computation
Directed graph
Distributed structure
Variable size
Reinforcement learning
Decision making

a b s t r a c t

Genetic Algorithm (GA) and Genetic Programming (GP) are typical evolutionary algorithms using string
and tree structures, respectively, and there have been many studies on the extension of GA and GP. How
to represent solutions, e.g., strings, trees, graphs, etc., is one of the important research topics and Genetic
Network Programming (GNP) has been proposed as one of the graph-based evolutionary algorithms. GNP
represents its solutions using directed graph structures and has been applied to many applications. How-
ever, when GNP is applied to complex real world systems, large size of the programs is needed to repre-
sent various kinds of control rules. In this case, the efficiency of evolution and the performance of the
systems may decrease due to its huge structures. Therefore, we have been studied distributed GNP based
on the idea of divide and conquer, where the programs are divided into several subprograms and they
cooperatively control whole tasks. However, because the previous work divided a program into some
subprograms with the same size, it cannot adjust the sizes of the subprograms depending on the prob-
lems. Therefore, in this paper, an efficient evolutionary algorithm of variable size distributed GNP is pro-
posed and its performance is evaluated by the tileworld problem that is one of the benchmark problems
of multiagent systems in dynamic environments. The simulation results show that the proposed method
obtains better fitness and generalization abilities than the method without variable size mechanism.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Genetic Algorithm (GA) (Holland, 1975) and Genetic Program-
ming (GP) (Koza, 1992, 1994) are typical evolutionary algorithms
that have been widely studied. A large number of real world appli-
cations have been also studied such as robot programming (Kamio
& Iba, 2005), financial problems (Alfaro-Cid et al., 2008; Iba & Sasa-
ki, 1999; Ruiz-Torrubiano & Suárez, 2010) and network security
systems (Banković, Stepanović, Bojanić, & Nieto-Taladriz, 2007;
Folino, Pizzuti, & Spezzano, 2005).

In order to create reliable systems using evolutionary algo-
rithms, the program structures (phenotype and genotype represen-
tations) and how to efficiently evolve them are important issues.
Therefore, as an extended algorithm of GA and GP, Genetic Net-
work Programming (GNP) and its extension using reinforcement
learning (GNP-RL) (Mabu, Hirasawa, & Hu, 2007; Hirasawa, Okubo,
Katagiri, Hu, & Murata, 2001) have been proposed and applied to
many applications (Mabu, Chen, Lu, Shimada, & Hirasawa, 2011;
Hirasawa, Eguchi, Zhou, Yu, & Markon, 2008). The program of
GNP is represented by directed graph structures and evolved by
crossover and mutation. Originally, GNP was proposed because

graph structures may have better representation abilities than
strings and trees. In addition, human brain also has a graph (net-
work) structure, so some inherent abilities may be involved in
the graph structure. In fact, the graph structure has some advanta-
ges such as (1) reusability of nodes and (2) applicability to dynamic
environments. Actually, GNP has the following features. (1) The di-
rected graph structure automatically generates some repetitive
processes like subroutines, and reuses nodes repeatedly during
the node transition, which contributes to creating programs with
compact structures. (2) Once GNP starts its node transition from
the start node, GNP executes judgment nodes (if–then functions)
and processing nodes (action functions) according to the connec-
tions between nodes without any terminal nodes. Therefore, the
node transition implicitly memorizes the history of judgment
and actions, which contributes to the decision making in dynamic
environments because GNP can make decisions based not only on
the current, but also the past information.

Evolutionary Programming (EP) (Fogel, Owens, & Walsh, 1966;
Fogel, 1994) is a graph-based evolutionary algorithm to create fi-
nite state machines (FSMs) automatically, but the characteristics
of EP and GNP are different. Generally, FSM must define the state
transition rules for all the combinations of states and possible in-
puts, thus the FSM program will become large and complex when
the number of states and inputs is large. On the other hand, the

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.063

⇑ Corresponding author. Tel./fax: +81 836 85 9519.
E-mail address: mabu@yamaguchi-u.ac.jp (S. Mabu).

Expert Systems with Applications 41 (2014) 1663–1671

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.08.063&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.08.063
mailto:mabu@yamaguchi-u.ac.jp
http://dx.doi.org/10.1016/j.eswa.2013.08.063
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


evolution of GNP selects only the necessary nodes by changing
connections between nodes, which means that GNP can judge only
the essential inputs for making decisions at the current situations.
As a result, GNP does not have to consider all the combinations of
the inputs and actions, which makes the compact program
structures.

When GNP is applied to complicated real world systems, large
size of graph structures are needed to represent various kinds of
rules for adapting to various kinds of situations. However, huge
structures may decrease the efficiency of evolution, as a result, de-
crease the performance of the systems. Therefore, we have been
studied distributed GNP (Yang, He, Mabu, & Hirasawa, 2012) based
on the idea of divide and conquer which is used to create the com-
plicated systems using relatively small size of the programs (Li,
Tian, & Sclaroff, 2012). In Yang et al. (2012), the programs are di-
vided into several subprograms which cooperatively control whole
tasks, and this method is applied to a stock trading model, which
shows better performances than the method without distributed
structures. However, because the previous work divided a program
into some subprograms with the same size, it cannot adjust the
sizes of the subprograms depending on the problems. The best size
of the structure is different depending on the difficulties of the
task, thus the fixed size of the structure limits the representation
ability of the solutions. In order to solve this problem, an efficient
evolutionary algorithm of variable size distributed GNP (VS-DGNP)
is proposed and its performance is evaluated by the tileworld prob-
lem (Pollack & Ringuette, 1990) that is one of the benchmark prob-
lems of multiagent systems in dynamic environments. The features
of the proposed method are as follows.

The complicated structure can be divided into several substruc-
tures with different sizes. Genetic operations can be executed in-
side each substructure and between substructures, respectively,
as a result, the efficient optimization can be done. Migration of
nodes from a certain substructure to another substructure is exe-
cuted to optimize the sizes of the substructures appropriately.

The rest of this paper is organized as follows. In Section 2, the
basic structure of GNP and GNP with reinforcement learning
(GNP-RL) is reviewed. In Section 3, the structure of distributed
GNP and how to realize variable size structure are explained. In
Section 4, after simulation environments and conditions are ex-
plained, the results and analysis are described. Section 5 is devoted
to conclusions.

2. Review of genetic network programming with reinforcement
learning

Because the proposed Variable Size Distributed GNP (VS-DGNP)
is based on GNP with Reinforcement Learning (GNP-RL), the struc-
ture of GNP-RL and its learning and evolution mechanisms are
firstly reviewed. An individual of GNP-RL is represented by a direc-
ted graph structure, evolved by crossover and mutation, and the
node transition rules are learned by reinforcement learning.

2.1. Basic structure of original GNP

Before explaining the detailed structure of GNP-RL, the basic
structure of original GNP is introduced (Fig. 1). It consists of a num-
ber of judgment nodes and processing nodes and one start node.
The number of nodes are determined in advance depending on
the complexity of the problems. Each judgment node has a if–then
branch decision function and each processing node has an action
function. For example, a judgment node examines a sensor input
of agents, and a processing node determines agent actions, e.g.,
go forward, turn left, turn right, etc. The role of the start node is
to determine the first node to be executed. Therefore, the node

transition starts from the start node, and a sequence of judgments
and processing is created by the connections between nodes and
judgment (if–then) results.

2.2. Additional components in GNP-RL: subnodes

The difference between the original GNP and GNP-RL is as fol-
lows. GNP-RL has subnodes in each judgment and processing node
as shown in Fig. 2. In the original GNP, one function is assigned to
each node and executed when the node is visited. In GNP-RL, sev-
eral functions (two functions in Fig. 2) are assigned as subnodes
and one of them is selected and executed by a reinforcement learn-
ing algorithm. Therefore, reinforcement learning selects better
function/subnode for each node and the route of the node transi-
tion is optimized. For example, subnode 1 in Fig. 2(a) has a judg-
ment function of ‘‘judge forward’’, and subnode 2 has that of
‘‘judge right’’. Subnode 1 in Fig. 2(b) has a processing function of
‘‘go forward’’, and subnode 2 has that of ‘‘turn left’’.

2.3. Genotype representation

The graph structure is realized by the combination of gene
structures shown in Fig. 3. NTi shows the node type of node i.
NTi = 0 means start node, NTi = 1 means judgment node, and
NTi = 2 means processing node. di is a time delay which shows
the time spent on the execution of node i. In this paper, di of judg-
ment node is set at 1 and that of processing node is set at 5. The
time delay is useful to fix the maximum number of nodes to be
executed in each action step. In this paper, one action step is de-
fined as a certain time units that an agent can use for executing
judgments and processing. If five time units (time delay) are as-
signed to one action step, the action step ends when the time units
used by the node transition become five or exceed five. That is, GNP
can execute ‘‘less than five judgments nodes and one processing
node’’ in one action step to determine an action. If ‘‘five judgment
nodes’’ are else executed before visiting a processing node, one ac-
tion step ends without taking any actions. The explanation on the
time delay is explained in Mabu et al. (2007) in more detail.

Qi1,Qi2, . . . are Q values (Sutton & Barto, 1998) assigned to the
subnodes in node i. IDi1,IDi2, . . . are the node functions of the sub-
nodes. Q value estimates the sum of the discounted rewards ob-
tained in the future. The contents of the functions are described
in the node function library. For example, NTi = 1 and IDi2 = 2 show
that the function of subnode 2 in node i is J2. Node functions used
in the simulations of this paper are shown in Table 1 in Section 4.1.

CA
i1;C

B
i1; . . . and CA

i2;C
B
i2; . . . show the next node numbers con-

nected from node i. For example, subnode 1 in node i is connected
to CA

i1;C
B
i1; . . .. The superscripts A and B correspond to the judgment

results, i.e., if the judgment result is A at subnode 1, the next node
becomes CA

i1.

2.4. Node transition and its learning algorithm

In this paper, Sarsa (Sutton & Barto, 1998) which is one of the
reinforcement learning algorithms is used for the learning of
GNP-RL. The reason why Sarsa is selected is that on-policy algo-
rithm (Sarsa) is effective to optimize state transitions considering
the effect of e � greedy policy used in this paper. The node transi-
tion of GNP-RL is carried out as follows.

When the current node is a judgment node, one of the subnodes
is selected according to e � greedy policy, i.e., the subnode with the
largest Q value is selected with the probability of 1 � e, otherwise
one subnode is randomly selected. After executing the function of
the selected subnode, the current node is transferred to the next
node according to the judgment result and connection. In
Fig. 2(a), suppose subnode 1 is selected, then one of the connec-

1664 S. Mabu et al. / Expert Systems with Applications 41 (2014) 1663–1671



Download	English	Version:

https://daneshyari.com/en/article/382490

Download	Persian	Version:

https://daneshyari.com/article/382490

Daneshyari.com

https://daneshyari.com/en/article/382490
https://daneshyari.com/article/382490
https://daneshyari.com/

