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a b s t r a c t

Processes characterized by high dimensional and mixture data challenge traditional statistical process
control charts. In this study, we propose a multivariate control chart based on the Gower distance that
can handle a mixture of continuous and categorical data. An extensive simulation study was conducted
to examine the properties of the proposed control chart under various scenarios and compared it with
some existing multivariate control charts. The simulation results revealed that the proposed control chart
outperformed the existing charts when the number of categorical variables increases. Furthermore, we
demonstrated the applicability and effectiveness of the proposed control charts through a real case study.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control (SPC) tools are widely used in moni-
toring and improving output quality in the manufacturing and ser-
vice industries (Woodall, 2000; Woodall & Montgomery, 1999).
Control charts, which are based on solid statistical theory, are the
most widely used tool in SPC (Montgomery, 2005). Their main pur-
pose is to detect any assignable changes that affect output quality.
Monitoring statistics and control limits are the two major compo-
nents in construction of a control chart. Monitoring statistics, plot-
ted on a control chart, can be established as a function of
observations. Control limits are generally determined based on
the probability distribution of the monitoring statistics with
user-specified false alarm rates. Out-of-control signals for a moni-
tored process are issued when the corresponding monitoring sta-
tistic exceeds (or falls below) the control limit.

Control charts can be divided into univariate and multivariate
charts based on the number of quality characteristics that they
monitor. Univariate charts monitor a single quality characteristic,
and multivariate charts monitor a number of quality characteris-
tics simultaneously. The most widely used multivariate control
chart is a Hotelling’s T2 control chart. Its monitoring statistic is
the distance between an observation and the scaled-mean,
estimated from in-control observations. The control limit of a
Hotelling’s T2 control chart is proportional to the percentile of
the F-distribution, assuming that the data follow a multivariate
normal distribution (Hotelling, 1947). The necessity of this distri-
butional assumption has restricted the applicability of Hotelling’s

T2 control charts to situations in which the data are nonnormally
distributed.

To address this problem, many distribution-free control charts
have been proposed (Bakir, 2006; Chakraborti, Van Der Laan, &
Bakir, 2001; Liu, 1995; Liu, Singh, & Teng, 2004; Phaladiganon,
Kim, Chen, Baek, & Park, 2011; Qiu, 2008; Qiu & Hawkins, 2001,
2003; Sukchotrat, Kim, & Tsung, 2009; Sun & Tsung, 2003;
Tuerhong, Kim, Kang, & Cho, 2012; Yang, Lin, & Cheng, 2011). A
comprehensive review of univariate distribution-free control
charts can be found in Chakraborti et al. (2001). As for multivariate
cases, Liu (1995) developed a multivariate nonparametric control
chart that uses the concept of data depth. Moreover, to improve
the location detection capability of the previous data depth-based
chart, Liu et al. (2004) later proposed a nonparametric multivariate
data depth moving average control charts. However, both of these
data depth methods require a high computational load, which
makes them less efficient for many modern processes that involve
many quality characteristics (Ning & Tsung, 2012). Qiu and Haw-
kins have worked on developing distribution free rank-based mul-
tivariate cumulative sum procedures to handle nonnormal
distributed process data (Qiu & Hawkins, 2001, 2003). However,
their methods assume that the distribution of the in-control data
is known. Recently, several other useful nonparametric multivari-
ate control charts based on sign test have been proposed (Das,
2009; Zou & Tsung, 2011; Zou, Wang, & Tsung, 2012).

Further, some studies have been conducted to integrate data
mining algorithms with control chart techniques. Sun and Tsung
(2003) introduced a kernel-based multivariate control chart that
uses support vector data description to handle nonnormally dis-
tributed processes. He and Wang (2007) presented a multivariate
control chart based on a k nearest neighbor algorithm. In terms
of low computational cost and better detection of out-of-control
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signals, Cui, Li, and Wang (2008) proposed an improved version of
kernel principal component analysis-based multivariate control
charts. Sukchotrat et al. (2009) proposed a K2 control chart based
on a k nearest neighbor data description. Stefatos and Hamza
(2009) proposed a multivariate control chart based on a robust
covariance matrix and principal component analysis. Yu and Xi
(2009) proposed an on-line monitoring approach based on a neural
network ensemble technique. EI-Midany, EI-Baz, and Abd-EIwahed
(2010) proposed a control scheme using artificial neural networks.
Bush, Chongfuangprinya, Chen, Sukchotrat, and Kim (2010) devel-
oped a nonparametric multivariate control charts using a linkage
ranking algorithm. Phaladiganon et al. (2011) proposed a boot-
strap-based multivariate T2 control chart for the situations in
which the distribution of observed data is nonnormal or unknown.
Kim, Jitpitaklert, Park, and Hwang (2012) proposed control charts
for multivariate and autocorrelated processes that use various data
mining algorithms. Verdier and Ferreira (2011) proposed an adap-
tive Mahalanobis distance-based multivariate control chart. Their
approach showed good performance with data that have a local
structure. Recently, Tuerhong, Kim, Kang, and Cho (2012) proposed
a distribution-free multivariate control chart based on a hybrid
novelty score.

All of the aforementioned approaches are designed for pro-
cesses, characterized by continuous quality characteristics. How-
ever, in some modern industries the data contain both
continuous and categorical variables. In service industries, for
example, a credit card transaction dataset described in Prodromi-
dis and Stolfo (1999) contain a mixture of 30 continuous and cat-
egorical variables, designed to detect fraudulent transaction. To
the best of our knowledge, only a few efforts have been made to
develop multivariate nonparametric control charts for mixture
data. In one such effort, Hwang, Runger, and Eugene (2007) pro-
posed a multivariate control chart using artificial contrast that con-
verts the monitoring problem into a supervised classification
problem. The basic idea behind their approach is to generate out-
of-control data from a uniform distribution and create labels
(classes) to build classification models. In another approach, Hu,
Runger, and Eugene (2007) simulated artificial out-of-control data
from a nonuniform distribution to detect the mean shifts in more
specific directions. Hu and Runger (2010) proposed an exponen-
tially weighted moving average version of the approach in Hwang
et al. (2007) to improve detection capability. Deng, Runger, and
Eugene (2012) proposed system monitoring with real-time con-
trasts. Unlike the recourse of the artificial contrasts embraced in
the other approaches, Deng et al.’ approach builds a new classifier
for each new observation, and this enables its on-line monitoring
capability. One advantage of these artificial contrast-based control
charts (Hu & Runger, 2010; Hu et al., 2007; Hwang et al., 2007,
Deng et al., 2010) is that they can treat mixture data. However, un-
like conventional control charts, their construction relies on super-
vised classification methods that necessarily require out-of-control
data as well as in-control data. Recently, Ning and Tsung (2012)
proposed a density-based control chart that uses a local outlier fac-
tor and show that their approach can efficiently handle processes
characterized by a mixture of continuous and categorical variables.
However, the simulation study presented to demonstrate the use-
fulness of their proposed approach has limitations, especially with
data that have a large number of categorical variables.

In the present study, we propose nonparametric multivariate
control charts based on the Gower distance to handle a mixture
of continuous and categorical data. In the proposed Gower dis-
tance-based control chart, the monitoring statistic is the value of
the Gower distance, and the control limits can be calculated by a
bootstrap percentile method.

The rest of the paper is organized as follows. In Section 2, we de-
scribe the proposed Gower distance-based multivariate control

chart in terms of its monitoring statistics and control limits. Sec-
tion 3 presents a simulation study that examines the performance
of the proposed control chart and compared it with existing ones
under various scenarios. In Section 4, we use real data to demon-
strate the feasibility and effectiveness of the proposed control
charts. Finally, Section 5 contains concluding remarks and topics
for future study.

2. Proposed Gower distance-based multivariate control charts
for mixture data

2.1. Gower’s dissimilarity coefficient

Let q be the size of dimension and x ¼ ðx1; . . . ;xp;xpþ1; . . . ;xqÞ be
a mixture observation, characterized by p categorical variables and
q–p continuous variables. Thus, the vector x can be rewritten as
follows:

x ¼ ðz1; . . . ; zp; c1; . . . ; cq�pÞT ¼ ðzT; cTÞ ð1Þ

where zTand cT represents the vector of the subset of x contain-
ing the p categorical variables and q–p continuous variables. Gow-
er’s dissimilarity coefficient is the weighted average of the
distances calculated for each variable after scaling each variable
to a [0,1] scale. Gower’s dissimilarity coefficient (Everitt, Landau,
Leese, & Stahl, 2011) between the two mixture observations
xi ¼ ðzT

i ; c
T
i Þ and xj ¼ ðzT

j ; c
T
j Þ can be calculated by the following

equation:

Dxixj
¼
Pp

r¼1wxixjzr DxixjzrPp
r¼1wxixjzr

þ
Pq—p

r¼1 wxixjcr DxixjcrPq—p
r¼1 wxixjcr

;

where wxixjzr and wxixjcr are, respectively, the weights for categorical
variable zr and continuous variable cr. Note that each variable is
equally weighted in this study. Dxixjzr is the distance along a categor-
ical variable zr that can be obtained as follows:

Dxixjzr ¼
0; zi

r ¼ zj
r

1; otherwise:

(

Dxixjcr is the Manhattan distance (i.e., L1 norm) along a continu-
ous variable cr that can be computed as follows:

Dxixjcr ¼
jci

r � cj
r j

maxðcrÞ �minðcrÞ
: ð2Þ

Although the Manhattan distance is used in the calculation of the
original Gower’s dissimilarity measure, other distance metrics can
be used.

2.2. Monitoring statistics based on the Gower distance

Our proposed control charts use a monitoring statistic based on
the Gower distance. First, we introduce some notations to describe
the monitoring statistic. Let X = {x1,x2, . . . , xn} be the set of
training (in-control) mixture observations where
xi ¼ ðzi

1; . . . ; zi
p; c

i
1; . . . ; ci

q—pÞ
T containing p categorical and q–p

continuous variables. Let xnþ1 ¼ ðznþ1
1 ; . . . ; znþ1

p ; cnþ1
1 ; . . . ; cnþ1

q�pÞ
T

be a
future observation (xnþ1 2 Rq).

2.2.1. Monitoring statistics based on global Gower distance
Global Gower distance of xn+1 is the average Gower distance

between xn+1 and all the training observations in X and can be
calculated from the following equation:

Gðxnþ1Þ ¼
Pn

i¼1kxnþ1 � xik
n

ð3Þ
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