
Opportunistic control mechanisms for ambience intelligence worlds

José M. Fernández-de-Alba a,⇑, Pablo Campillo b, Rubén Fuentes-Fernández a, Juan Pavón a

a Dept. Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid, Madrid, Spain
b Dept. Communications and Information Engineering, Universidad de Murcia, Murcia, Spain

a r t i c l e i n f o

Keywords:
Ambient intelligence
Opportunistic control
Context-awareness
Virtual worlds simulation
FAERIE
UbikSim

a b s t r a c t

Ambient intelligence (AmI) worlds consist of heterogeneous collections of interconnected devices that
integrate smoothly in the environment to offer services to their users. These devices can be added, change
or fail, modifying the system topology. Also, other circumstances may change, affecting users’ activities,
e.g., time, location, or the presence of other users. These changes modify the information the system has
available to satisfy users’ needs, i.e., the context. AmI systems need to adapt to these evolving conditions
in order to be able to provide their services, but being as unobtrusive as possible for their users. There are
also performance requirements that the system must fulfill to provide responses to environment stimuli
in real time. Opportunistic control mechanisms address these issues by monitoring the context, and sus-
pending or resolving goals when the appropriate conditions are met. This paper presents FAERIE, a soft-
ware framework that supports the development of AmI applications with facilities for context
management that rely on opportunistic control. The development of FAERIE systems uses a 3D simulator
tool for testing and validation called UbikSim. A case study on an artistic installation illustrates the use of
this infrastructure.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ambient intelligence (AmI) worlds are composed of multiple
devices that are interconnected and tightly integrated with the
environment where they are embedded (Remagnino, Hagras,
Monekosso, & Velastin, 2005). They provide services to their users
based on the information they gather, what allows them minimiz-
ing the need of explicit actions by users. This information is called
context and comes from different sources, e.g., sensors, users’
input, historical data, or external sources (Abowd et al., 1999).

Building applications with this functionality implies dealing
with the heterogeneity of devices and the information they
manage. These applications have also to consider the evolution of
user related features, such as location, time, or activities. There
are also dynamic changes in system configurations. Device connec-
tions can change or fail, modifying the topology and configuration
of the system. These changes, in turn, modify the available infor-
mation, providing new or redundant data, or making impossible
to get an accurate representation of the current context. There
are also requirements of quality of service, such as performance,
cost, or energy consumption, which are important for real-time
applications, to improve device autonomy, or to build affordable
systems (Baldauf, Dustdar, & Rosenberg, 2007).

AmI systems must deal with the previous issues requiring as
little as possible user intervention for their configuration and func-
tioning. Users should not be aware of all the devices in the environ-
ment in order to use it (Kieffer, Lawson, & Macq, 2009). Therefore,
the system itself must be able to adapt dynamically to all those
changes, building context representations with available informa-
tion and making decisions based on the reliability of such
representations.

Opportunistic control mechanisms can be used to support the
design of AmI applications with these features. Following this
approach, when the system receives a goal, it does not solve it
immediately, but suspends it. Then, it monitors changes in the
context to detect a suitable moment to solve the goal, i.e., needed
resources and information are available, and the context fulfills
certain conditions (Patalano & Seifert, 1997). The observation of
the context continues during goal resolution, so the system can
suspend the process if the goal becomes unreachable. This behav-
ior implies the existence of mechanisms to facilitate context-
awareness: components are able to determine when conditions
depending on context change.

Some recent works (Huang, chan Lan, & Tsai, 2008) have pro-
posed platforms that support these opportunistic features. They
are mostly focused on the layers at the lowest levels of abstraction.
These layers are related with establishing opportunistic connec-
tions among the nodes in an unstable network (Arnaboldi, Conti,
& Delmastro, 2011; Boldrini, Conti, Delmastro, & Passarella,
2010), and the opportunistic use of unknown remote abstract
resources (Conti, Giordano, May, & Passarella, 2010; Kurz &

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.084

⇑ Corresponding author. Tel.: +34 696633877.
E-mail addresses: jmfernandezdealba@fdi.ucm.es (J.M. Fernández-de-Alba),

pablocampillo@um.es (P. Campillo), ruben@fdi.ucm.es (R. Fuentes-Fernández),
jpavon@fdi.ucm.es (J. Pavón).

Expert Systems with Applications 41 (2014) 1875–1884

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.08.084&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.08.084
mailto:jmfernandezdealba@fdi.ucm.es
mailto:pablocampillo@um.es
mailto:ruben@fdi.ucm.es
mailto:jpavon@fdi.ucm.es
http://dx.doi.org/10.1016/j.eswa.2013.08.084
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Ferscha, 2010). A further step is to prepare systems for identifying
abstract conditions on their current context in order to produce
abstract interpretations and to execute opportunistic behaviors
(Challa, Gulrez, Chaczko, & Paranesha, 2005). This opportunistic
information fusion is relevant to AmI applications where there
exist behaviors dependent on multiples inputs. Although there
are architectural solutions for all these levels individually, there
is a lack of architectures including opportunism in every level.

The development of AmI systems does not only require infra-
structure for applications, e.g., platforms or libraries, but also tools
for that development. One of the most problematic issues is how to
test and validate real applications due to their deployment costs. A
solution to this problem is simulating most of the involved physi-
cal devices and their deployment with virtual spaces. There exist
works that develop test simulations using virtual sensors (Park,
Moon, Hwang, & Yeom, 2007), and others that apply 3D scenarios
to manage (Shirehjini et al., 2005) or demonstrate (Bylund & Espi-
noza, 2002) smart spaces in specific settings. However, little work
has been done regarding general platforms that use 3D scenarios
for assisting in the design and validation of AmI systems.

This paper presents an infrastructure that addresses the previ-
ous issues. It includes two elements. There is a library providing
the mechanisms for the opportunistic management of context in
AmI applications called FAERIE (Framework for AmI: Extensible
Resources for Intelligent Environments) (Fernández-de Alba, Fuen-
tes-Fernández, & Pavón, 2012b). This is complemented with Ubik-
Sim (Campillo-Sánchez & Botía, 2012), a platform for the
simulation of 3D AmI worlds, which supports the testing of FA-
ERIE-based applications.

FAERIE provides different services for building AmI worlds
(Fernández-de Alba et al., 2012b). AmI components are defined
as context observers that observe and update shared context con-
tainers, which manage parts of the abstract representation of the
real context. These context containers transparently coordinate
among them to offer a virtual globally shared representation of
the context, which is distributed among different nodes. When a
context observer modifies a piece of the context representation,
every other context observer interested in that piece of informa-
tion is made aware of the change, which triggers successive behav-
iors. FAERIE uses these components to support the development of
workflow-based context-aware applications. This implies that
applications are designed around the definition of sets of intercon-
nected activities involving different actors (Ardissono, Furnari,
Goy, Petrone, & Segnan, 2007).

UbikSim is a platform that allows running simulations of 3D
intelligent environments with different configurations (Campillo-
Sánchez & Botía, 2012). It supports the specification maps of the
physical spaces and their sensors and actuators. Engineers can sim-
ulate the signals of these sensors or connect them with actual
external sensors. Active elements are implemented as software
agents, which can represent users and system controllers of actua-
tors. Simulations can be executed in batch mode (i.e., agents repre-
senting users have predefined behaviors) or interactively (i.e.,
those agents are controlled via keyboard).

The use of this overall infrastructure is shown with an applica-
tion that belongs to an artistic installation. The application guides
spectators through different rooms using sensors to find their posi-
tions and speakers to give them instructions.

An initial version of this paper was presented at the IDEAL 2012
conference (Fernández-de Alba, Campillo, Fuentes-Fernández, &
Pavón, 2012a). This paper offers more detailed information on sys-
tem components and extended experimentation.

The remaining paper is organized as follows. Sections 2 and 3
introduce the infrastructure. The former explains how FAERIE sup-
ports opportunistic control behavior, and how this support drives
the design of AmI applications; the later presents UbikSim and

discusses its integration with FAERIE. Sections 4–6 elaborate the
case study. Section 4 presents the problem addressed in it. Section 5
describes how to design the application as a context-aware work-
flow whose components follow an opportunistic control. Section 6
shows the actual behavior of the application and its adaption in
different scenarios. Results are discussed and compared with re-
lated work in Section 7. Finally, Section 8 presents some conclu-
sions and discusses future work.

2. Opportunistic control in FAERIE

FAERIE adopts an opportunistic control to organize the behavior
of its systems. It offers these features through components of the
framework (see Section 2.1) whose functionality supports different
kinds of opportunistic behavior (see Section 2.2). FAERIE also in-
cludes information on how to design systems that incorporate
opportunism at the application level using the previous mecha-
nisms (see Section 2.3).

2.1. FAERIE components

FAERIE conceives an AmI system as a set of interconnected envi-
ronments. Each one contains one or more devices running compo-
nents of the framework that provide services for the AmI
applications or other components. They also manage private con-
text containers that maintain the context information. Examples
of environments are a smart room populated with sensors and a
computing node, or a mobile device with sensing and computa-
tional capabilities.

The context is a representation of the system’s environment,
which includes the physical environment and the computational
environment. The first one represents the things existing in the real
world, such as people and external devices, and the second one
represents the things existing in the computer executing the
framework, such as software components. Fig. 1 represents this
idea. These virtual entities are known as context elements, and
work as a snapshot of the actual context.

The representation of the context follows a ‘‘context conceptual’’
approach to represent the context, i.e., the context represents enti-
ties and their relationships through time, as opposed to ‘‘context
theoretic’’ approaches, in which the context describes assertions
or circumstances (Anagnostopoulos, Tsounis, & Hadjiefthymiades,
2007). Among the alternatives to implement the context, FAERIE
adopts an object-oriented approach (Strang et al., 2004), based on
the observer pattern.

The context elements that represent the context are updated by
context observers, which represent the behaviors that rule the con-
text changes for the fulfillment of objectives (Fernández-de Alba,
Fuentes-Fernández, & Pavón, 2011). The way in which context ele-
ments and observers work together is what actually implements
the opportunistic behavior of the framework.

2.2. Framework-level opportunistic behavior

Opportunistic behavior (Patalano & Seifert, 1997) consists in
being able to execute tasks when the context meets certain condi-
tions, and doing it in an adapted way to those conditions. This
behavior needs control mechanisms to evaluate the conditions,
and to suspend and restart tasks depending on the changes. This
kind of control is relevant to AmI applications because of their dy-
namic changes and mobile nature. These are the result of the use of
technologies as common today as geographic localization or ‘‘plug
and play’’ devices.

There are different types of opportunistic control in AmI appli-
cations. At the application level, applications perform opportunistic
planning. It consists of observing the context in order to exploit the

1876 J.M. Fernández-de-Alba et al. / Expert Systems with Applications 41 (2014) 1875–1884



Download English Version:

https://daneshyari.com/en/article/382510

Download Persian Version:

https://daneshyari.com/article/382510

Daneshyari.com

https://daneshyari.com/en/article/382510
https://daneshyari.com/article/382510
https://daneshyari.com

