
A model-driven approach for facilitating user-friendly design of complex
event patterns

Juan Boubeta-Puig ⇑, Guadalupe Ortiz, Inmaculada Medina-Bulo
Department of Computer Science and Engineering, University of Cádiz, C/ Chile 1, 11002 Cádiz, Spain

a r t i c l e i n f o

Keywords:
Complex event processing
Model-driven development
Event processing language
Fast data

a b s t r a c t

Complex Event Processing (CEP) is an emerging technology which allows us to efficiently process and cor-
relate huge amounts of data in order to discover relevant or critical situations of interest (complex
events) for a specific domain. This technology requires domain experts to define complex event patterns,
where the conditions to be detected are specified by means of event processing languages. However,
these experts face the handicap of defining such patterns with editors which are not user-friendly
enough. To solve this problem, a model-driven approach for facilitating user-friendly design of complex
event patterns is proposed and developed in this paper. Besides, the proposal has been applied to differ-
ent domains and several event processing languages have been compared. As a result, we can affirm that
the presented approach is independent both of the domain where CEP technology has to be applied to
and of the concrete event processing language required for defining event patterns.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, volumes of data produced by a variety of heter-
ogeneous sources have increased around the world (Tsuchiya,
Sakamoto, Tsuchimoto, & Lee, 2012). As a result, both Information
Technology (IT) and business users need to efficiently collect and
process this huge amount of data in real time to discover relevant
situations which will allow driving successful business decisions or
actions (Hansen, 2013).

In this regard, big data is an approach which helps to process
this huge amount of data. It is characterized in terms of the three
V’s: Volume, Velocity and Variety (Russom, 2011). Volume refers to
the amount of data that can be managed and stored every day.
Velocity is the big data dimension which deals with measuring
how fast data can be collected and analyzed. Variety means the dif-
ferent existent data types: audio, video, text, etc. However, big data
normally focus on data previously collected and stored in dat-
abases. For that reason, it is not the best solution to process data
from different sources in real time. To solve it, big data can be
complemented with fast data (Hansen, 2013), an approach which
allows to continuously analyze data and which can be character-
ized by a new dimension known as Value. This dimension aims
to determine why such data is important for business.

In order to detect relevant or critical situations in business, fast
data may be integrated with Complex Event Processing (CEP)

(Luckham, 2002), a technology that allows detecting meaningful
events in real time and inferring valuable knowledge for end users.
For that purpose, the conditions describing the situations to be de-
tected must be specified by using special templates known as event
patterns. These patterns will be added into an event processing en-
gine, the software responsible for analyzing and correlating the
events received from different sources, as well as for raising alerts
to users or systems interested in complex events (situations) gener-
ated by the detected event patterns.

These event patterns are defined using specific languages —
developed for this purpose— known as Event Processing Languages
(EPLs). Nevertheless, a wide experience on EPLs is required for
defining such patterns. Thereby, one of the main drawbacks of
using CEP by non-technical users, who are the ones having the do-
main-specific knowledge on the pattern to be detected, is the big
learning curve necessary for becoming an expert in these lan-
guages. Some software solutions, such as Esper’s editor (EsperTech
Inc., 2013), Oracle CEP Visualizer (Oracle, 2013), StreamBase Studio
(StreamBase, 2013) and SAP Sybase ESP Studio (Sybase, 2013), pro-
vide graphical tools to address this problem. Despite this fact, these
tools are not user-friendly enough since non-experts on CEP have
to write some EPL code by hand.

As a solution, in this paper, we propose a model-driven
approach so that domain experts (but non experts on CEP) can
concentrate in the graphical definition of event patterns in a
user-friendly way without the need of hand-writing any code.
Afterwards, the required code will be automatically generated. In
concrete, our approach has four major contributions. Firstly, a
metamodel is proposed to define event patterns as models which

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.07.070

⇑ Corresponding author. Tel.: +34 956 01 56 92.
E-mail addresses: juan.boubeta@uca.es (J. Boubeta-Puig), guadalupe.ortiz@u-

ca.es (G. Ortiz), inmaculada.medina@uca.es (I. Medina-Bulo).

Expert Systems with Applications 41 (2014) 445–456

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.07.070&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.07.070
mailto:juan.boubeta@uca.es
mailto:guadalupe.ortiz@uca.es
mailto:guadalupe.ortiz@uca.es
mailto:inmaculada.medina@uca.es
http://dx.doi.org/10.1016/j.eswa.2013.07.070
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


do not depend on the specific EPL required by the final engine used
for complex event processing. Secondly, a domain-independent
editor is implemented from this metamodel to facilitate user-
friendly design of event patterns. Thirdly, a model validation pro-
cess checks the correctness of these event patterns represented
as models. Fourthly, a model transformation process automatically
transforms such models into any particular EPL —Esper EPL code in
this work. Furthermore, a case study in the field of health care is
described and implemented for illustrating our proposal, which is
also evaluated and discussed.

The rest of this paper is organized as follows. Section 2 includes
background on Model-Driven Software Development (MDSD), CEP
and EPL. Section 3 describes our model-driven approach in a
nutshell and, afterwards, this approach is detailed in the following
sections. In concrete, Section 4 explains the EPL metamodel for
defining event patterns, Section 5 describes the implemented
editor, Section 6 specifies the metamodel constraints and Section 7
details the process for transforming event pattern models into
EPL code and the latter integration into a CEP engine. Then,
Section 8 describes the application of our approach in a health-care
case study. Subsequently, our approach is evaluated and discussed
in Section 9. Some related works are described in Section 10.
Finally, the conclusion and future work are highlighted in
Section 11.

2. Background

In this section, the relevant subject matters for the scope of this
paper, MDSD, CEP and EPL, are introduced.

2.1. Model-driven software development

MDSD is an important paradigm in software development
which aims to find domain-specific abstractions and make them
accessible by means of formal modeling (Stahl, Voelter, & Czar-
necki, 2006). These abstract representations of aspects of a system,
known as models, are used as primary artifacts in the development
process (Hussmann, Meixner, & Zuehlke, 2011). The key features of
this paradigm is that makes use of models of different levels of
abstraction and provides model transformations in order to auto-
matically transform a model into another as well as a model into
implementation code.

Each model is an instance of a metamodel. In this scope a meta-
model describes the structure of models in an abstract way. Partic-
ularly, a metamodel is defined using a metamodel language joined
to a set of rules which specify the constraints so that the metamod-
el is well-formed. The most well-known metamodel language is
Ecore and the de facto standard for capturing such constraints is
Object Constraint Language (OCL).

This way, MDSD facilitates the automation of software
production, increasing the productivity, quality and maintain-
ability of software systems (Stahl et al., 2006). Even more,
domain experts (non-technical users) can also understand such
models, so that they can play an active role in software
development.

2.2. Complex event processing

CEP is a cutting-edge technology which provides powerful
techniques for processing and correlating events in order to detect
relevant or critical business situations (complex events) in real
time.

An event can be defined as anything that happens or could
happen (Luckham, 2012). Mainly, events can be classified into
three categories: a simple event is indivisible and happens at a

point in time, a complex event contains more semantic meaning
which summarizes a set of other events, and a derived event is
generated when applying a process to one or more other events
(Event Processing Technical and Society, 2011). Events can be
derived from other events by applying or matching event pat-
terns, templates where the conditions describing the situations
to be detected are specified. A CEP engine is the software used
to match these patterns over continuous and heterogenous event
streams (timely ordered sequence of events of multiple types),
and to raise alerts about the complex events created when
detecting such event patterns.

According to Vincent (2010), CEP systems, as well as other deci-
sion-support systems such as expert systems take expert event-dri-
ven decisions, where expert knowledge is encoded from the
available subject matter experts. In addition, these systems use
‘‘rules’’ (or event patterns) to determine whether stated goals (con-
ditions) are fulfilled.

CEP can be applied to different areas. According to Luckham
(2012), some of the major areas for sales of CEP are: fraud detec-
tion and security (Edge & Falcone Sampaio, 2012), transportation
and traffic management (Dunkel, Fernández, Ortiz, & Ossowski,
2011), health care (Yuan & Lu, 2009; Yao, Chu, & Li, 2011), energy
and manufacturing (Vikhorev, Greenough, & Brown, 2013), loca-
tion-based services (Uhm, Lee, Hwang, Kim, & Park, 2011), financial
systems and operations (Edge & Falcone Sampaio, 2012), and oper-
ational intelligence in business (Chaudhuri, Dayal, & Narasayya,
2011). Among other additional areas, CEP can also be applied to
home automation (Romero et al., 2011) and RFID signals (Yao
et al., 2011).

To sum up, CEP allows detecting meaningful events and infer-
ring valuable knowledge for end users in different domains. The
main advantage of using this technology to process complex events
is that the latter can be identified and reported in real time, reduc-
ing the latency in decision making, unlike the methods used in tra-
ditional software for event analysis.

2.3. Event processing language

As previously mentioned, in order to detect situations of interests
on specific areas it is necessary the definition of so-called event pat-
terns. These event patterns are defined using specific languages
developed for this purpose known as EPLs. According to Etzion
and Niblett (2010), these languages can be classified by the follow-
ing language styles: stream-oriented, rule-oriented and
imperative.

Stream-oriented EPLs are SQL-like languages but including new
concepts, such as timing and temporal relationships. The learning
curve is not high because their syntax is very close to SQL, world-
wide known. Some of these EPLs are: Esper EPL (EsperTech Inc.,
2013), CQL (Oracle, 2013), StreamSQL (StreamBase, 2013) and
CCL (Sybase, 2013). In this work, we decided to transform graphical
event patterns into Esper EPL since this language provides more
operators than the others and its open-source engine is very
efficient: it can process over 500,000 events/s (EsperTech Inc.,
2013).

Rule-oriented EPLs implement event queries where condition
expressions are evaluated over a set of facts. Some of CEP solutions
that provide rule-oriented EPLs are: IBM Operational Decision
Management (IBM, 2013), Drools Fusion (JBoss, 2013) and ETALIS
(ETALIS, 2013).

Imperative EPLs define rules in an imperative way where oper-
ators define transformations over their inputs. Progress Apama
(Progress Software, 2013) is an event processing platform which
provides this EPL style.

Further information about other existing EPLs and CEP systems
can be found in the survey by Cugola and Margara (2012).

446 J. Boubeta-Puig et al. / Expert Systems with Applications 41 (2014) 445–456



Download English Version:

https://daneshyari.com/en/article/382556

Download Persian Version:

https://daneshyari.com/article/382556

Daneshyari.com

https://daneshyari.com/en/article/382556
https://daneshyari.com/article/382556
https://daneshyari.com

