
Distributed adaptive containment control of networked flexible-joint
robots using neural networks q

Sung Jin Yoo ⇑
School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea

a r t i c l e i n f o

Keywords:
Containment control
Networked flexible-joint (FJ) robots
Function approximation technique
Directed graph

a b s t r a c t

This study presents a distributed adaptive containment control approach for a group of uncertain flexi-
ble-joint (FJ) robots with multiple dynamic leaders under a directed communication graph. The leaders
are neighbors of only a subset of the followers. The derivatives of the leaders are unknown, namely,
the position information of the leaders is only available for implementing the proposed control approach.
The local adaptive dynamic surface containment controller for each follower is designed using only
neighbors’ information to guarantee that all followers converge to the dynamic convex hull spanned
by the dynamic leaders. The function approximation technique using neural networks is employed to
estimate the model uncertainties of each follower. It is proved that the containment control errors con-
verge to an adjustable neighborhood of the origin regardless of model uncertainties and the lack of shared
communication information. Simulation results for FJ manipulators are provided to illustrate the effec-
tiveness of the proposed adaptive containment control scheme.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The distributed coordination tracking problem for multi-agent
systems in the presence of a single leader or multiple leaders has
been sustained much interest due to practical applications in var-
ious areas. Especially, networked Lagrangian systems, which can
describe several mechanical systems such as autonomous vehicles,
robot manipulators, and biped robots, have been considered as a
main control target in the last few years because they cannot be
controlled by the previous distributed control methods (Cao,
Stuart, Ren, & Meng, 2011; Ferrari-Trecate, Buffa, & Gati, 2006; Ji,
Ferrari-Trecate, Egerstedt, & Buffa, 2008; Lou & Hong, 2010; Li,
Ren, & Xu, 2012; Ren, 2007, 2008, 2008; Spanos, Olfati-Saber, &
Murray, 2005; Su, Wang, & Lin, 2009; Shi & Hong, 2010) for linear
systems with single-integrator or double-integrator dynamics due
to their nonlinear property. In the presence of the single leader,
distributed tracking control approaches were presented for net-
worked Lagrangian systems (Chen & Lewis, 2011; Chung & Slotine,
2009; Hou, Cheng, & Tan, 2009; Mei, Ren, & Ma, 2011; Min, Sun,
Wang, & Li, 2011). However, there have been few research results
available on the distributed tracking problem for networked
Lagrangian systems in the presence of multiple leaders. A

distributed containment control method for Lagrangian systems
under a directed graph is recently proposed in Mei, Ren, and Ma
(2012) where the control objective is to drive all followers into
the convex hull spanned by the multiple leaders. Despite the pro-
gress, the aforementioned results for networked Lagrangian sys-
tems are not available for networked Lagrangian systems with
flexible joints (i.e., networked flexible-joint (FJ) robots with nonlin-
earities and uncertainties unmatched in the torque input).

On the other hand, the tracking control of a single FJ robot has
attracted the attention of many researchers due to the fact that the
joint flexibility is an important factor to achieve better link-posi-
tion tracking performance (Chang & Yan, 2011; Kwan & Lewis,
2000; Tomei, 1991). The backstepping technique (Krstic,
Kanellakopoulos, & Kokotovic, 1995) and the dynamic surface
design technique (Swaroop, Hedrick, Yip, & Gerdes, 2000), in par-
ticular, has been employed for controlling of FJ robots (Abouelsoud,
1998; Bridges, Dawson, & Abdallah, 1995; Nicosia & Tomei, 1991;
Yoo, Park, & Choi, 2008). However, the results for single FJ robots in
the absence of a networked communication graph cannot be di-
rectly applied to the distributed containment control problem of
multiple FJ robots in the presence of networked communication
among the multiple leaders and followers (i.e., the lack of shared
information of multiple leaders).

Motivated by these observations, this paper investigates a dis-
tributed adaptive containment control problem of networked
uncertain FJ robots in the presence of multiple dynamic leaders
under a directed graph topology. Only a small fraction of follow-
ers can access the position information about the leaders. A

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.07.072

q This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2012R1A1A1001440).
⇑ Tel.: +82 2 820 5288.

E-mail address: sjyoo@cau.ac.kr

Expert Systems with Applications 41 (2014) 470–477

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.07.072&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.07.072
mailto:sjyoo@cau.ac.kr
http://dx.doi.org/10.1016/j.eswa.2013.07.072
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


distributed adaptive dynamic surface containment control system
is designed for the followers described by uncertain FJ robots so
that all followers converge to the dynamic convex hull spanned
by the dynamic leaders regardless of the lack of information of
multiple leaders. The function approximation technique using neu-
ral networks is employed to estimate model uncertainties of net-
worked multiple FJ robots included in each communication
block. The contribution of this paper is threefold: (i) it is the first
trial to design a distributed adaptive containment control system
for networked Lagrangian systems with flexible joints; (ii) from
the distributed dynamic surface containment control design, the
simple local controllers can be designed regardless of the order
of the followers and the complexity of communication links; and
(iii) the derivative terms of the multiple dynamic leaders are not
required to implement the controllers. Adaptive laws for weights
of neural networks, the bound of residual approximation error
terms, and the bounds of the first derivative terms of the multiple
dynamic leaders are derived from the Lyapunov stability theorem.
Furthermore, it is shown that all signals of the controlled closed-
loop system are semi-globally uniformly ultimately bounded and
the containment control errors converge to an adjustable neigh-
borhood of the origin. Finally, simulation results for networked FJ
manipulators are provided to illustrate the effectiveness of the
proposed approach.

2. Preliminaries and problem formulation

2.1. Graph theory notions

Consider a group of N þM systems. Then, the communication
topology is a directed graph (i.e., digraph for short) G , ðV; EÞ with
the set of nodes or vertices V , f1; . . . ;N þMg and the set of edges
or arcs E#V � V. A directed edge ðj; iÞ 2 E means that agent i can
obtain information from agent j, but not vice versa where j and i
are the parent node and child node, respectively. The set of
neighbors of a node i is N i ¼ fjjðj; iÞ 2 Eg, which is the set of nodes
with edges incoming to node i. A directed path from node i1 to
node ik is a sequence of edges of the form ði1; i2Þ; ði2; i3Þ;
. . . ; ðik�1; ikÞ in a digraph. A directed tree is a digraph where every
node has exactly one parent except for the root and the root has
directed paths to every other node. A digraph has a directed span-
ning tree if there exists at least one agent that has directed paths to
all other agents.

2.2. Problem statement

Suppose that there exist N followers, labeled as agents 1 to N,
and M leaders, labeled as agents N þ 1 to N þM, in a team. The N
followers are represented by the following Euler–Lagrange equa-
tions considering flexible joints (Tomei, 1991)

Mf ðqf Þ€qf þCf ðqf ; _qf Þ _qf þGf ðqf ÞþFf _qf þKf ðqf �qf ;mÞþ!f ;1ðqf ; _qf ;qf ;mÞ¼0;

Jf €qf ;mþBf _qf ;mþKf ðqf ;m�qf Þþ!f ;2ðqf ; _qf ;qf ;m; _qf ;mÞ¼uf ;

yf ¼qf ;

ð1Þ

where f ¼ 1; . . . ;N; qf ; _qf ; €qf 2 Rp denote the joint position, velocity,
and acceleration vectors of the fth follower, respectively,
Mf ðqf Þ 2 Rp�pis a symmetric positive definite inertia matrix of the
fth follower, Cf ðqf ; _qf Þ 2 Rp�p denotes the Coriolis-centripetal matrix
of the fth follower, Gf ðqf Þ 2 Rp is the gravity vector of the fth fol-
lower, Ff 2 Rp�p is a diagonal, positive definite matrix representing
the coefficient of friction at each joint of the fth follower, and
qf ;m; _qf ;m; €qf ;m 2 Rp denote the actuator position, velocity, and accel-
eration vectors of the fth follower, respectively. The constant posi-
tive definite, diagonal matrices Kf 2 Rp�p, Jf 2 Rp�p, and Bf 2 Rp�p

represent the joint flexibility, the actuator inertia, and the natural
damping term of the fth follower, respectively. The control vector
uf ¼ ½uf ;1; . . . ;uf ;p�> 2 Rp is used as the torque input at each actuator
of the fth follower, and yf ¼ ½yf ;1; . . . ; yf ;p�

> 2 Rp is an output vector
of the fth follower. !f ;1ðqf ; _qf ; qf ;mÞ 2 Rp and !f ;2ðqf ; _qf ; qf ;m;
_qf ;mÞ 2 Rp represent model uncertainty vectors of the fth follower.
We assume that the motion of leaders is independent of that of fol-
lowers, the followers 1 to N have at least one neighbor, and the
leaders N þ 1 to M have no neighbors. Notice that all FJ followers
(1) can have heterogeneous dynamics.

For the N þM agents, the adjacent matrixA¼ ½aij� 2 RðNþMÞ�ðNþMÞ

related with the digraph G is defined as aij > 0 if ðj; iÞ 2 E and aij ¼ 0
otherwise where i ¼ 1; . . . ;N þM and j ¼ 1; . . . ;N þM. Self-edges
are not allowed, i.e., aii ¼ 0. Notice that aij ¼ 0; i ¼ N þ 1; . . . ;

N þM; j ¼ 1; . . . ;N þM since the leaders have no neighbors. The
(nonsymmetric) Laplacian matrix L is represented by L ¼ D�
A 2 RðNþMÞ�ðNþMÞ where D ¼ diag½d1; . . . ; dNþM�; di ¼

PNþM
j¼1;j–iaij is

the diagonal element of the degree matrix D. To describe the com-
munication among the followers and the communication between
the followers and the leaders separately, the Laplacian matrix L
can be rewritten as

L ¼ L1 L2

0M�N 0M�M

" #
ð2Þ

where L1 2 RN�N is the matrix related to the communication among
the N followers and L2 2 RN�M denotes the matrix related to the
communication from the M leaders to the N followers.

Definition 1. Boyd and Vandenberghe, 2004. The set X # Rn is
said to be convex if for any x1; x2 2 X and any h 2 ½0;1�, the point
hx1 þ ð1� hÞx2 is in X . The convex hull CoðXÞ for a set of points
X ¼ fx1; . . . ; xng in X is the minimal convex set containing all points
in X and is defined as CoðXÞ ¼ f

Pn
i¼1hixijxi 2 X; hi > 0;

Pn
i¼1hi ¼ 1g.

The objective of this paper is to design distributed adaptive con-
tainment control laws uf for the FJ followers (1) with unmatched
uncertainties so that under the directed communication graph,
the follower outputs yf ðtÞ converge to the convex hull spanned
by the dynamic leaders rlðtÞ; l ¼ N þ 1; . . . ;N þM, i.e., infhðtÞ2RðtÞ
kyf ðtÞ � hðtÞk < � where f ¼ 1; . . . ;N;RðtÞ ¼ CofrNþ1; . . . ; rNþMg, and
� is a positive constant which can be made sufficiently small, while
all signals in the total closed-loop systems are bounded.

We use the following properties and assumptions throughout
this paper.

Property 1. Lewis, Abdallah, and Dawson, 1993. The inertia matrix
Mf ðqf Þ is a symmetric and uniformly bounded positive definite matrix.

Property 2. Lewis et al., 1993. The Coriolis-centripetal matrix
Cf ðqf ; _qf Þ can be defined such that the matrix _Mf ðqf Þ � 2Cf ðqf ; _qf Þ is
the skew-symmetric matrix.

Assumption 1. The functions !f ;1ðqf ; _qf ; qf ;mÞ and
!f ;2ðqf ; _qf ; qf ;m; _qf ;mÞ representing the unstructured model uncer-
tainties are bounded and unknown on the digraph G where
f ¼ 1; . . . ;N.

Assumption 2. The multiple dynamic leaders rlðtÞ 2 Rp,
l ¼ N þ 1; . . . ;M are bounded and available for only the fth follow-
ers satisfying l 2 N f ðtÞ; f ¼ 1; . . . ;N. In addition, their first deriva-
tives _rlðtÞ 2 Rp are bounded as k _rlðtÞk 6 �rl;0 where �rl;0 are
unknown constants.
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