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a b s t r a c t

Hidden Markov models (HMMs) perform parameter estimation based on the forward–backward (FB) pro-
cedure and the Baum–Welch (BW) algorithm. The two algorithms together may increase the computa-
tional complexity and the difficulty to understand the algorithm structure of HMMs clearly. In this
study, an increasing mapping based hidden Markov model (IMHMM) is proposed. Between the observa-
tion sequence and possible state sequence an increasing mapping is established. The re-estimation for-
mulas for the model parameters are derived straightforwardly based on these mappings instead of FB
variables. The IMHMM has simpler algorithm structure and lower storage requirement than the HMM.
Based on IMHMM, an expandable process monitoring and fault diagnosis framework for large-scale
dynamical process is developed. To characterize the dynamic process, a novel index considering serial
correlation is used to evaluate process state. The presented methodology is carried out in Tennessee East-
man process (TEP). The results show improvement over HMM in terms of memory complexity and train-
ing time of the model. Also, the power of IMHMM can be observed compared with principal component
analysis (PCA) based methods.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hidden Markov models (HMMs) have become an effective sta-
tistical learning tool in various applications such as speech recog-
nition (Rabiner, 1989), signal processing (Fan & Xia, 2001),
handwriting recognition (Nel, du Preez, & Herbst, 2005), computa-
tional biology (Krogh, Brown, Mian, Sjolander, & Haussler, 1994).
The HMM is capable of modeling dynamical dependencies and cor-
relations between complex real world phenomena. The forward–
backward (FB) algorithm which is based on dynamic programming
methods is the foundation for estimating HMM parameters (Baum
& Egon, 1967; Baum & Sell, 1968). In fact, the FB algorithm was
presented earlier by Chang and Hancock (1966), although it is of-
ten attributed to Baum and his colleagues. The FB variables are
introduced to compute the smoothed state densities, in terms of
which HMM parameters can be updated according to the Baum–
Welch (BW) algorithm (Baum, 1972; Baum, Petrie, Soules, & Weiss,
1970).

In spite of its complexity and numerical instability, the FB algo-
rithm has been found useful in many areas including bioinformat-
ics, computer security and signal processing, speech recognition
(Austin, Schwartz, & Placeway, 1991). However, only when the
FB algorithm is incorporated with the BW algorithm the HMM

parameters can be re-estimated. This may increase the complexity
of algorithm structure and the amount of computation and storage
while training an HMM. In particular, the re-estimation procedure
may be computationally expensive for estimation from long obser-
vation sequences (Khreich, Granger, Miri, & Sabourin, 2010; Meyer
& Durbin, 2004; Warrender, Forrest, & Pearlmutter, 1999).

In order to reduce the complexity of HMMs, some efforts which
seek to improve the FB algorithm have been reported in literature.
The checkpointing algorithm saves only some reference columns or
checkpoints rather than all the filtered state densities (Grice, Hug-
hey, & Speck, 1997; Khreich et al., 2010; Tarnas & Hughey, 1998).
The Forward-only algorithm directly propagates all smoothed
information in forward-only manner (Churbanov & Winters-Hilt,
2008; Miklos & Meyer, 2005). Yet these two methods both reduce
the memory complexity at the expense of increasing the computa-
tional complexity. The Forward Filtering Backward Smoothing
(FFBS) algorithm (Ott, 1967; Raviv, 1967) is an alternative to FB
with the same memory complexity and slightly fewer computa-
tions than FB. A modification to the FFBS termed Efficient Forward
Filtering Backward Smoothing is developed to make the memory
complexity independent of the length of observation sequence
without incurring computational overhead (Khreich et al., 2010).
But it requires the inverse of the transposed transition matrix,
and at every time instant the filtered state densities are divided
by the emission probabilities that are usually very small, which
may result in singularity and numerical instability. In addition,
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there are approximations to FB (Florez-Larrahondo, 2005; Hammer
& Tjelmeland, 2011; Wang, Guan, & Zhang, 2004), whereas they re-
sult in different HMMs and their theoretical convergence proper-
ties are convinced only when the data sequence is infinite.

Most of these alternatives, however, can be viewed as variants
of the FB algorithm in nature because they all propagate state
information by the forward or backward pass. Their difference
mainly lies in which type of state densities (filtered, smoothed,
predictive or their combinations) they choose. In other words,
the algorithm structure of HMMs based on BW and one of the vari-
ants of FB is still complex. In this paper, an increasing mapping
based hidden Markov model (IMHMM) is first proposed and ap-
plied to perform dynamical process monitoring and fault diagnosis
in large-scale process. In contrast with HMM and its extensions,
such as hidden semi-Markov model (Dong & He, 2007; Yu & Kobay-
ashi, 2006), autoregressive HMM (Rabiner, 1989), IMHHM does not
involve any FB variables or their variants. The re-estimation formu-
las are derived through the joint probability of the observation se-
quence and increasing mapping which stems from combinatorial
theory in mathematics (Mao, 1990). The memory complexity of
IMHHM is reduced and the training time of the model is shortened
in most cases due to its simpler algorithm structure inherently
than that of HMM.

This paper is organized with the following fashion. Section 2
briefly introduces the HMM, the increasing mapping and indepen-
dent component analysis (ICA). In Section 3, the novel increasing
mapping based HMM is presented. Following that, we develop an
IMHMM based process monitoring and diagnosis framework. Sec-
tion 4 further validates the proposed system using data collected
from TEP. Finally, conclusions are drawn in Section 5.

2. Theoretical background

2.1. Elements of HMM

The HMM is a finite-state discrete-time first-order Markov
chain characterized by two related mechanisms, i.e., a homoge-
neous Markov chain with unobservable states and a set of emission
probabilities depending on the current state. The fundamental ele-
ments of HMM are specified by the following (Rabiner, 1989):

(1) A set of N hidden states S = {si}, i = 1,2, . . .,N.
(2) The state transition probability distribution A = {aij} with

aij ¼ Pðqtþ1 ¼ sjjqt ¼ siÞ

where qt is the hidden state visited at time t.
(3) A set of observation symbols V = {v1,v2, . . .,vM}, where M is

the number of distinct observations for each state.
(4) The observation probability distribution, one for each state,

B = {bi(k)}, where

biðkÞ ¼ Pðvk at tjqt ¼ siÞ; 1 6 i 6 N;1 6 k 6 M:

(5) An initial state distribution p ¼ fpig, where

pi ¼ Pðq1 ¼ siÞ; 1 6 i 6 N:

Hence, the complete parameter set of HMM is often represented
by the compact notation: k = (p,A,B).

2.2. Increasing mapping

In order to give a precise definition of the increasing mapping, it
is important to know what is meant in combinatorial theory by a
relation. A relation on a set X is a subset R of the set X � X which

is a set of ordered pairs of elements in X. Some special properties
(Brualdi, 2002) for a relation R on X are as follows:

(1) R is reflexive, provided (x,x) 2 R for all x in X.
(2) R is antisymmetric, provided for x and y with x – y, if

(x,y) 2 R, then (y,x) R R.
(3) R is transitive, provided that if (x,y) 2 R and (y,z) 2 R, then

(x,z) 2 R.

A partial order on X is a reflexive, antisymmetric and transitive
relation R. A partial order R is a total order, provided for all x and
y in X, either (x,y) 2 R or (y,x) 2 R.

Definition 1. Let R1, R2 be a partial order on X and A, respectively.
The mapping f:X ? A is an increasing mapping, provided that if
(x,y) 2 R1, then (f(x), f(y)) 2 R2 (Mao, 1990).

For convenience, we usually denote a partial order R by 6, and
(x,y) 2 R becomes x 6 y. If we denote R1, R2 by 61 and 62, respec-
tively, f is an increasing mapping provided whenever x 61 y holds,
f(x) 62 f(y) also holds.

2.3. Independent component analysis (ICA)

ICA is a recently developed method which can extract under-
lying factors or components from multivariate statistical data
typically in the form of a large database of samples. The basic
idea of ICA is to decompose observed data into liner combina-
tions of statistically independent components (Comon, 1994).
Hyvarinen (1999) presented a simple and efficient fixed-point
algorithm for ICA, called Fast ICA, where it is assumed that d
measured variables can be expressed as liner combinations of
m (6d) unknown independent components (ICs). The relation-
ship is given by

X ¼ AY þ E ð1Þ

where X = [x(1),x(2), . . .,x(n)] 2 Rd�n is the data matrix of n samples,
A = [a1,a2, . . .,am] 2 Rd�m is the unknown mixing matrix,
Y = [y(1),y(2), . . .,y(n)] 2 Rm�n is the independent component ma-
trix, and E 2 Rd�n is the residual matrix. The ICs and the measured
variables have means of zero. Equivalently, the objective of ICA is
to find a demixing matrix W that is expressed as

Ŷ ¼WX ð2Þ

where the rows of reconstructed matrix Ŷ are as independent of
each other as possible. In terms of the assumption that the rows
of W with the largest sum of squared coefficient have the greatest
impact on the variation of Ŷ , the data dimension can be reduced
by selecting a few rows of W. Denote the new matrix constituted
by the selected a rows of W as Wd (dominant part of W) and the
remaining rows of W as We (excluded part of W), respectively. Sim-
ilarly, split the columns of A into two matrixes Ad and Ae. The ICA
statistics I2, I2

e and the squared prediction error Q2 also known as
the SPE statistic, are defined as follows:

I2 ¼ ŜT
dŜd; Ŝd ¼Wdx ð3Þ

I2
e ¼ ŜT

e Ŝe; Ŝe ¼Wex ð4Þ

Q2 ¼ eT e ¼ ðx� x̂ÞTðx� x̂Þ; x̂ ¼ AdWdx ð5Þ

The utilization of I2 and I2
e enables the whole space spanned by

the original variables to be monitored based upon a new founda-
tion, and the Q2 statistic monitors the residual part of the process
variation (Lee, Yoo, & Lee, 2004).
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