Expert Systems with Applications 40 (2013) 5817-5821

=

Expert
Systems

Contents lists available at SciVerse ScienceDirect

wi
Applications
An International
Journal

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

A hybrid AC3-tabu search algorithm for solving Sudoku puzzles

@ CrossMark

Ricardo Soto ®P*, Broderick Crawford *¢, Cristian Galleguillos?, Eric Monfroy ¢, Fernando Paredes ®

2 Pontificia Universidad Catdlica de Valparaiso, Av. Brasil 2950, Valparaiso, Chile

> Universidad Auténoma de Chile, Av. Pedro de Valdivia 641, Santiago, Chile

€Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile

4 CNRS, LINA, University of Nantes, 2 rue de la Houssiniére, Nantes, France

€Escuela de Ingenieria Industrial, Universidad Diego Portales, Manuel Rodriguez Sur 415, Santiago, Chile

ARTICLE INFO ABSTRACT

The Sudoku problem consists in filling a n> x n? grid so that each column, row and each one of the n x n
sub-grids contain different digits from 1 to n?. This is a non-trivial problem, known to be NP-complete.
The literature reports different incomplete search methods devoted to tackle this problem, genetic com-
puting being the one exhibiting the best results. In this paper, we propose a new hybrid AC3-tabu search
algorithm for Sudoku problems. We merge a classic tabu search procedure with an arc-consistency 3
(AC3) algorithm in order to effectively reduce the combinatorial space. The role of AC3 here is do not only
acting as a single pre-processing phase, but as a fully integrated procedure that applies at every iteration
of the tabu search. This integration leads to a more effective domain filtering and therefore to a faster res-
olution process. We illustrate experimental evaluations where our approach outperforms the best results

Keywords:
Metaheuristics

Tabu search
Constraint satisfaction
Sudoku

reported by using incomplete search methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Sudoku puzzle consists in a board commonly of size 9 x 9,
subdivided into sub-grids of size 3 x 3 including pre-filled cells
with digits that cannot be changed or moved (see Fig. 1). The puz-
zle is solved when the board is filled so that each row, column and
sub-grid contain different digits from 1 to 9. The general Sudoku
problem of n? x n? board size including n x n sub-grids is known
to be NP-complete (Yato, Seta, & Ito, 2003). Then exact methods
may solve the problem in exponential time. Sudokus are often clas-
sified in terms of difficulty. The relevance and positioning of the
problem may vary its difficulty, however the number of pre-filled
cells has little or no incidence. Mantere and Koljonen (2007) clas-
sify Sudokus into tree categories: easy, medium, and hard.

Various approaches have been proposed during the last years to
solve Sudoku puzzles. Most works range from complete search
methods such as constraint programming (Moon & Gunther, 2006;
Rossi, van Beek, & Walsh, 2006; Simonis, 2005) and Boolean satisfi-
ability (Lynce & Ouaknine, 2006) to incomplete search methods such
as genetic programming (Asif, 2009; Mantere & Koljonen, 2007) and
metaheuristics in general (Moraglio, Togelius, & Lucas, 2006; Lewis,
2007; Moraglio & Togelius, 2007; Mantere & Koljonen, 2008a). Other
less traditional techniques in this context such as rewriting rules
(Santos-Garcia & Palomino, 2007), Sinkhorn balancing (Moon,

* Corresponding author at: Pontificia Universidad Catélica de Valparaiso, Chile.
Tel.: +56 32 2273659.
E-mail address: ricardo.soto@ucv.cl (R. Soto).

0957-4174/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.05.019

Gunther, & Kupin, 2009) and entropy minimization (Gunther &
Moon, 2012) have also been proposed to tackle this problem.

In this paper we focus on incomplete search methods. We pro-
pose a new hybrid algorithm for Sudoku puzzles by combining a
classic tabu search with an arc-consistency 3 (AC3) algorithm that
acts as a domain reducer. The idea is to apply the AC3 procedure as
a pre-processing phase but also at each iteration of the tabu search
in order to actively filter the domains. This integration clearly re-
duce the number of tabu search iterations speeding up the solving
process. We illustrate experimental results where our approach
outperforms better than the incomplete methods reported in the
literature.

This paper is structured as follows. The related work is pre-
sented in Section 2 followed by the preliminaries. The new hybrid
AC3-tabu search algorithm for Sudokus is described in Section 4.
Experiments are illustrated in Section 5. Finally, we conclude and
give some directions for future work.

2. Related work

The literature presents several techniques for solving, rating
and generating Sudoku problems. Sudoku problems can definitely
be solved by using brute-force algorithms, backtracking-like proce-
dures or complete search methods in general (Crawford, Aranda,
Castro, & Monfroy, 2008; Lynce & Ouaknine, 2006; Moon &
Gunther, 2006; Simonis, 2005). In this paper, we focus on incom-
plete search methods to solve Sudoku puzzles, in particular hard
instances of such a problem. In this context, different approaches

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.05.019&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.05.019
mailto:ricardo.soto@ucv.cl
http://dx.doi.org/10.1016/j.eswa.2013.05.019
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

5818 R. Soto et al./Expert Systems with Applications 40 (2013) 5817-5821

sub-grid column
S T
! 7 1 2 |5|
! 1 1 1
! 3| 1 1
I
| EEE
I I I
=== === ===
row |I| 4 9 N
=== ===t
1|7 I 13
5 | |7
] T
3 816 |
I]
1] 1

Fig. 1. Sudoku puzzle instance.

has been reported. For instance, Asif (2009) proposes an ant colony
optimization algorithm for solving Sudoku problems. The author
employs as heuristic information the number of digits correctly
placed on the board. However, the best value reached is 76, 81
being the global optimum. In Moraglio and Togelius (2007) a geo-
metric particle swarm optimization (GPSO) algorithm is proposed.
Their goal was rather to validate the use of GPSO for non-trivial
combinatorial spaces than the performance of results. Indeed they
achieve a 72% of success; for 36 out of 50 tries the global optimum
was reached.

Hill-climbers have also been tested to solve Sudoku puzzles
(Moraglio et al., 2006), they are able to succeed for easy Sudokus
failing for medium and hard ones. A genetic algorithm (GA) for
Sudoku puzzles is illustrated in Moraglio et al. (2006) as well.
The behaviour of geometric crossovers is studied, in particular
Hamming space crossovers and swap space crossovers. Both ap-
proaches performs better than hill-climbers and mutations alone.
But, they are not able to solve medium Sudokus; and only by using
the swap space crossover, 15 out of 30 hard Sudokus are solved. In
Mantere and Koljonen (2007) another GA approach is proposed.
Here, different categories of Sudoku are solved: easy, medium,
and hard. The algorithm is an extension of one devoted to solve
magic square problems. Good results are exhibited for solving easy
and medium Sudokus, being able to solve 2 out of 30 hard Sudokus.
A similar approach using cultural algorithms is proposed in Man-
tere and Koljonen (2008a), but is in general superseded by the
GA previously reported.

Lewis (2007) presents a simulated annealing algorithm for Sud-
okus. The idea is to model the puzzle as an optimization problem
where the goal is to minimize the number of incorrectly placed
digits on the board. However, the approach is mostly centered on
creating solvable problem instances than solving hard Sudoku
puzzles.

3. Preliminaries
3.1. Tabu search

Tabu search (TS), introduced by Glover, is a metaheuristic espe-
cially devoted to solve combinatorial optimization problems. It has
successfully been used for tackling different kind of real-life prob-
lems as well as well-known problems from academic literature
such as the travelling salesman problem, the knapsack problem,
the quadratic assignment problem, or the timetabling problem.

The core idea of TS relies in employing a local search procedure
that allows to iteratively move from one potential solution to an-
other promising one until some stop criterion has been reached.
This procedure is complemented with a memory structure called

tabu list, which is perhaps a main feature that distinguishes TS
from many incomplete methods. The goal of this memory structure
is twofold: (1) to help the TS to escape from poor-scoring areas, (2)
and to avoid returning to recent visited states.

Algorithm 1 depicts the classic procedure of tabu search for
minimization. As input, it receives the size of the tabu list and as
output it returns the best solution reached. Then, an initial solution
is created, which is commonly chosen at random. At line 3, a while
loop manages the iterations of the process until a given stop con-
dition is met. Some examples of stop condition are a number of
iterations limit or a threshold on the solution cost. At line 7, the
neighboring solutions are added to the candidate list only if they
do not contain elements on the tabu list. Then, a potential best can-
didate is selected, which commonly corresponds to the best quality
solution according to the cost. At line 11, the cost of the selected
candidate is evaluated. If it is better than the one of Sy, its fea-
tures are added to the tabu list and the candidate becomes the
new Spes. Finally, some elements are allowed to expire from the
tabu list, generally in the same order they were added.

Algorithm 1 - Tabu search

Input: TabulListg;,,
Output: Sy

1 Spest «— ConstructInitialSolution ()

2 Tabulist — 0

3 While - StopCondition do

4 CandidateList — 0

5 For (Scandidate € Sbestnefghboorhnnd) do

6 If - ContainsAnyFeatures(Sqndidate.Tabulist)
7 CandidateList— Sqngiqgate + CandidateList

8 End If

9 End For

10 Siandidate — LocateBestCandidate (CandidateList)
11 If cost(Scandidate) <05 t(Spest)

12 TabulList «— FeatureDifferences(Scndidate Shest)
13 Sbest < Scandidate

14 While TabulList > Tabulistg;,. do

15 ExpireFeature(Tabulist)

16 End While

17 End If

18 End While
19 Return Sy

3.2. Arc consistency

As illustrated by Simonis (2005), Sudokus can be represented as
constraint networks and as a consequence techniques from con-
straint satisfaction can be applied over them. Arc-consistency is
one of the most used filtering techniques in constraint satisfaction
for reducing the combinatorial space of problems. Arc-consistency
is formally defined as a local consistency within the constraint pro-
gramming field (Rossi et al., 2006). A local consistency defines
properties that the constraint problem must satisfy after constraint
propagation. Constraint propagation is simply the process when
the given local consistency is enforced to the problem. In the fol-
lowing, some necessary definitions are stated (Bessiére, 2006).

Definition 1 (Constraint). A constraint c is a relation defined on a
sequence of variables X(c) = (i, .- ., Xi,,), called the scheme of c. ¢
is the subset of ZX(©)! that contains the combinations of values (or
tuples) 7 e ZX©! that satisfy c. [X(c)| is called the arity of c. A
constraint ¢ with scheme X(c)= (xq,...,%) is also noted as
C(X1, ..y Xg)-

Download English Version:

https://daneshyari.com/en/article/382591

Download Persian Version:

https://daneshyari.com/article/382591

Daneshyari.com

https://daneshyari.com/en/article/382591
https://daneshyari.com/article/382591
https://daneshyari.com

