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a b s t r a c t

A risk measure is a mapping from the random variables representing the risks to a number. It is estimated
using historical data and utilized in making decisions such as allocating capital to each business line or
deposit insurance pricing. Once a risk measure is obtained, an efficient monitoring system is required to
quickly detect any drifts in the risk measure. This paper investigates the problem of detecting a shift in
value at risk as the most widely used risk measure in insurance companies. The probabilistic C control
chart and the parametric bootstrap method are employed to establish a risk monitoring scheme in insur-
ance companies. Since the number of claims in a period is a random variable, the proposed method is a
variable sample size scheme. Monte Carlo simulations for Weibull, Burr XII, Birnbaum–Saunders and
Pareto distributions are carried out to investigate the behavior and performance of the proposed scheme.
In addition, a real example from an insurance company is presented to demonstrate the applicability of
the proposed method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A risk measure attempts to assign a numerical value to a ran-
dom functional loss. Risk measurement is used as an input in many
decisions such as the amount of holding capital for an insurance
company or prices of different types of insurance services. There
are several risk measures in the literature, however, the most
widely used risk measure in insurance is value at risk (VaR). Wang
et al. (2005) present the applications of VaR in insurance compa-
nies and discuss on optimal insurance contracts. VaRp (also
denoted by np) is the pth quantile of the loss distribution, or it
can be defined as the size of loss for which there is a small proba-
bility 1 � p of exceeding. For risk managers it is very important to
detect (quickly) in which areas of their insurance business there is
a ‘‘deviation’’ from what could be considered as a ‘‘normal’’ activ-
ity. If VaR is at 99%, then 1 out of 100 losses is expected to be larger
than VaR. However, in day-to-day operations, we may observe less
or more than 1 loss out of 100 losses, then it is vital to know
whether the observed deviation is a random error or it is due to
an assignable cause which necessitates a change in decisions. The
control chart is a useful aid, frequently used in the process control,
to discriminate the effects of assignable causes versus the effects of
chance causes. In insurance companies, a control chart can be used

to alarm when too many and so the risk manager should do some-
thing to control the claims.

In mathematical form VaRp (X) is:

VaRpðXÞ � inffxjPrðX > xÞ 6 1� pg ð1Þ

where p is called confidence level and often is selected 0.95 or 0.99
in practice. X denotes the random variable that refers to the loss
size. We will drop sub-index p reference to X for an easier notation.
Although VaR has been criticized for not being a coherent risk mea-
sure as introduced by Artzner et al. (1999) since it is not sub-addi-
tive in general but it is classified into natural risk statistics
introduced by Heyde et al. (2007), it is known as a robust risk mea-
sure with respect to modeling assumptions. For a justification of the
concept and a comprehensive study of VaR we refer to Jia and Dyer
(1996) and Krause (2003). Ma and Wong (2010) establish some
behavior foundations for various types of VaR models and discuss
several alternative risk measures for investors. It is well known that
loss data usually have right-skewed distributions (Bolancé et al.,
2003, 2008; Buch-Larsen et al., 2005; Lane, 2000). Fig. 1 shows a
histogram of third party claims severity data borrowed from an
insurance company which exhibits a typical right-skewed behavior
with many small claims and only a few large claims. There are two
approaches to estimate the distribution of loss data. In the first ap-
proach, the data are fitted to a distribution with high flexibility in
shape such as Weibull, Gamma, Pareto or Burr XII distributions; this
approach is called the parametric approach. Another approach is
called the non-parametric approach which uses empirical distribu-
tion or kernel function to estimate the probability density function
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of data. The parametric approach in loss distribution analysis is
widely used in practice.

After estimating VaR, it is important to monitor and detect any
shifts in the risk.2 In statistical quality control terminology, estimat-
ing VaR using historical data can be interpreted as phase I of statis-
tical process control whereas we estimate the parameters of
population distribution and establish the control limits. Mihailescu
(2004) applies an Exponentially Weighted Moving Average (EWMA)
control chart in monitoring VaR when the loss random variable fol-
lows a normal distribution. However, normality assumption is not
reliable for the loss function in the most of the cases (Bolancé et
al., 2003). Detecting shifts enables insurance companies to revisit
their policies and decisions to prevent from enormous losses. In this
article we design bootstrap control charts with variable sample size
to monitor VaR in insurance companies. Moreover, we employ a
probabilistic C control chart in monitoring the number of claims in
a specific horizon of time. Hence, In phase I we establish two control
charts: (1) a probabilistic C chart for monitoring the number of
claims (C) in each period and (2) a control chart to monitor VaR
based on claim values (X) in each period. To construct a control chart
for a parameter, the distribution of the parameter estimator is re-
quired otherwise the bootstrapping should be used. In monitoring
VaR, since the distribution of the VaR estimator is unknown we
implement bootstrap control charts. Moreover, since the sample size
is the number of claims in each period, which is a random variable,
the designed monitoring scheme is a variable sample size bootstrap
scheme.

The remainder of this paper is organized as follows. Section 2
gives an overview on the methods to estimate VaR when data
are fitted to one of the following distributions: Weibull, Burr
XII, Birnbaum–Saunders or Pareto distributions. Section 3
describes bootstrap methods to establish control limits for
quantiles. The monitoring scheme for the number of claims and
the severity of claims is explained in Section 4. The performance
evaluation using extensive simulation studies considering in-
control average run length (ARL) and out-of-control ARL is dis-
cussed in Section 5. A real example from an insurance company
is illustrated in Section 6. Finally, Section 7 offers conclusions
and final remarks.

2. Estimating value at risk

The estimation of VaR is equal to estimating a quantile of a pop-
ulation, and the estimation is subject to errors. Stephens (1983)
shows the nonparametric estimation of VaR is biased. For the para-
metric approach, Kupiec (1995) in a simulation study using return
distributions that are normal or Student-t, indicates that the esti-
mation of VaR is subject to both high variation and bias. In order
to take the bias into consideration, there are some bias corrected
methods. For instance Efron (1982) estimates bias, b, by bb ¼ U�1

ðbnp;bootÞ=brnp ;boot where bnp;boot and brnp ;boot are bootstrap estimates of
pth quantile and its standard error respectively. The standard error
of VaRp estimator typically increases when p increases and the
behavior of a quantile estimate is critically altered by the tail of
the loss distribution. Despite of the large standard error of VaR, it
is known as a robust risk measure. Kendall and Stuart (1972) de-
rive formula for the asymptotic variance of quantile estimator:
for np (pth quantile) of X with density fX(x), this variance is:

r2
np ;n
¼ n�1pð1� pÞfXðnpÞ�2 þ Oðn�3=2Þ ð2Þ

where n is the sample size. There are two principle approaches in
estimating VaR from the historical data. The first approach is fitting
a parametric distribution to the data, in this approach a distribution
that takes a variety of shapes such as Weibull or Burr XII distribu-
tion is fitted to the data and the goodness-of-fit test is employed
to check the model fit. Then VaR as a quantile of the distribution
is obtained from the best fitted distribution. For an instance of this
approach we refer to Sun and Hong (2010), who apply importance
sampling in the parametric method to estimate VaR. The second
approach is using the non-parametric density estimation tech-
niques that fits a non-parametric distribution based on the empiri-
cal distribution or the kernel function to the historical data; one can
then estimate VaR from non-parametric density function. Chang
et al. (2003) and Jeong and Kang (2009) use the non-parametric
method to estimate VaR. Zmeskal (2005) proposes a method to
estimate VaR in fuzzy environments. If the empirical distribution
function is used in a non-parametric approach the VaRp is obtained
by one of the following formulas:bnp;method1

p ¼ Xðbðn�1Þpcþ1Þ ð3Þ

bnp;method2 ¼ Xðbðnþ1ÞpcÞ ð4Þ

bnp;method3 ¼ Xðbðn�1Þpcþ1Þ þ ððn� 1Þp� bðn� 1ÞpcÞðXðbðn�1Þpcþ2Þ

� Xðbðn�1Þpcþ1ÞÞ ð5Þ

bnp;method4 ¼ Xðbðnþ1ÞpcÞ þ ððnþ 1Þp� bðnþ 1ÞpcÞðXðbðnþ1Þpcþ1Þ

� Xðbðnþ1ÞpcÞÞ ð6Þ

where b.c is the floor function and X(i) is the ith order statistic of X in
the sample. Another method to estimate pth quantile is the jackknife
method. The delete-one jackknife estimate of np is obtained by:bnp;jackknife ¼ ðbðn� 1Þpc þ 1Þn�1Xðbðn�1Þpcþ2Þ þ ð1� ðbðn� 1Þpc

þ 1Þn�1ÞXðbðn�1Þpcþ1Þ ð7Þ

and the jackknife estimate of the variance of bnp;jackknife is given by
(see Martin, 1990; Miller, 1974):

brnp;jackknife
¼ ðn� 1Þðn� bðn� 1Þpc þ 1Þðbðn� 1Þpc þ 1Þn�2

ðXðbðn�1Þpcþ2Þ � Xðbðn�1Þpcþ1ÞÞ2 ð8Þ

In the appendix we explore the biases of the above estimations.
Martin (1990) shows that the variance of the jackknife estimator of
sample quartile is inconsistent. Shao (1987) obtains a consistent

Fig. 1. Histogram of the third party claims (n = 500).

2 Risk monitoring and customer auditing is essential to the guarantee solvency in
the insurance industry (see recent contributions by Guelman, 2012; Kaishev et al.,
2013; Koyuncugil and Ozgulbas, 2012; Shin et al., 2012; Thuring et al., 2012).
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