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a b s t r a c t

This paper proposes an identification method for Hammerstein systems using simultaneous perturbation

stochastic approximation (SPSA). Here, the structure of nonlinear subsystem is assumed to be unknown,

while the structure of linear subsystem, such as the system order, is assumed to be available. The main ad-

vantage of the SPSA-based method is that it can be applied to identification of Hammerstein systems with

less restrictive assumptions. In order to clarify this point, piecewise affine functions with a large number of

parameters are adopted to approximate the unknown nonlinear subsystems. Furthermore, the linear sub-

systems are supposed to be described in continuous-time. Though this class of systems closely reflects the

actual systems, there are few methods to identify such models. Hence, the SPSA-based method is utilized to

identify the parameters in both linear and nonlinear subsystems simultaneously. The effectiveness of the pro-

posed method is evaluated through several numerical examples. The results demonstrate that the proposed

algorithm is useful to obtain accurate models, even for high-dimensional parameter identification.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The modelling of real-world plants and processes, which are non-

linear in nature, remains a challenging problem. Both an expert and

intelligent systems are therefore required to model accurately such

plants and processes. One way to cope with this difficulty is to in-

troduce identification of block oriented models. These models in-

clude a Hammerstein model (a static nonlinear subsystem followed

by a linear subsystem), a Wiener model (a linear subsystem followed

by a static nonlinear subsystem), or a Hammerstein–Wiener model

(a linear subsystem sandwiched by two static nonlinear subsystems

or vice-versa). In particular, an intelligent system, such as a system

with a neural feed-forward controller, is modeled as a Hammerstein

model. These models have been adopted by many researchers partly

because they closely reflect actual nonlinear systems with relatively

simple structures. As a result, these models have been successfully

used to describe many practical plants, such as fuel cells (Li, Zhu, Cao,

Sui, & Hu, 2008), valve actuators (Wang & Zhang, 2014), wind tur-

bines (van der Veen, van Wingerdeen, & Verhaegen, 2013), spark ig-
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nition engine torques (Togun, Baysec, & Kara, 2012), and stirred tank

reactors (Shi, Xu, & Dai, 2011).

Among various types of nonlinear system models, the Hammer-

stein model is quite popular. In fact, the identification of Hammer-

stein systems has been widely reported in the literature (Bai, 2004;

Bai & Li, 2004, Ding & Chen, 2005; Ding, Liu, & Liu, 2011; Ding, Shi,

& Chen, 2006; 2007b; Greblicki, 2000; Hasiewicz & Mzyk, 2004; Liu

& Bai, 2007; Pawlak, 1991; Zhao, 2006). Over the past two decades,

various methods for identification of Hammerstein systems have

been studied extensively. These can be roughly classified into sev-

eral categories, such as the iterative method (Liu & Bai, 2007; Naren-

dra & Gallman, 1966; Rangan, Wolodkin, & Polla, 1995; Stoica, 1981;

Voros, 1997), the over-parameterization method (Chang & Luus, 1971;

Ding, Chen, & Iwai, 2007a; Hsia, 1976), the blind approach (Bai & Fu,

2002), the subspace method (Verhaegen & Westwick, 1996), the least

squares method (Ding & Chen, 2005; Goethals, Pelckmans, Suykens, &

Moor, 2005), the parametric instrumental variables method (Laurain,

Gilson, & Garnier, 2009; Stoica & Soderstrom, 1981), the stochas-

tic method (Bilings & Fakhouri, 1978; Greblicki, 1996; Pawlak, 1991)

and the non-parametric identification method (Bai, 2003; Greblicki &

Pawlak, 1987; Krzyak, 1993, 1996).

Recently, a decomposition-based Newton iterative identification

approach for a Hammerstein nonlinear FIR system with ARMA noise

was presented by Ding, Deng, and Liu (2014). Here, it was claimed

that a fast convergence rates with more accurate parameter esti-

mation can be achieved by using the Newton iterative method. In

http://dx.doi.org/10.1016/j.eswa.2015.08.041

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.08.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.08.041&domain=pdf
mailto:ahmad@robot.kuass.kyoto-u.ac.jp
mailto:mashraf@ump.edu.my
mailto:sazuma@i.kyoto-u.ac.jp
mailto:sugie@i.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.eswa.2015.08.041


52 M.A. Ahmad et al. / Expert Systems With Applications 43 (2016) 51–58

Wang, Ding, and Ximei (2015), a hierarchical least squares method

has been proposed for the identification of Hammerstein state space

model. A similar approach is applied to Hammerstein nonlinear con-

trolled autoregressive models (Chen & Ding, 2015). Both results show

that the hierarchical identification principle may improve the com-

putational efficiency by decomposing one nonlinear system into sev-

eral subsystems with smaller dimensions and fewer variables. In Ma

and Liu (2015), a nonlinear recursive instrumental variables (RIV)

identification method for Hammerstein ARMAX system is adopted.

The effectiveness of the RIV method is shown in terms of identifica-

tion accuracy and convergence speed, especially under colored noise.

Meanwhile, a blind approach with new over-sampling strategy was

adopted in Yu, Zhang, and Xie (2014) to produce a consistent param-

eter estimation in the presence of noise.

In spite of such abundant literature, several restrictions are in-

evitable in their studies from the theoretical view-point.

(i) Most of the identification methods are restricted to the models

in discrete-time, while it is natural to express a real system in

a continuous-time domain.

(ii) Many approaches assume that the static nonlinear system is

given by a linear combination of several basis functions.

(iii) In the over-parameterization identification method, the iden-

tification model contains the products of nonlinear and linear

parameters, causing redundant parameter identification and a

large computational load.

Though it looks that that we can handle general class of nonlinear

subsystems by adopting so many basis functions (such as higher or-

der polynomials and piecewise affine functions), this is not tractable

in reality in the existing identification frame work.

On the other hand, there are different types of identification

methods which utilize evolutional computation, such as the cuckoo

search algorithm (Gotmare, Patidar, & George, 2015), the stochastic

gradient (Chen & Wang, 2015; Mao & Ding, 2015), and the PSO (par-

ticle swarm optimization) (Jingzhuo et al., 2014; Ko, 2011; Nanda,

Panda, & Majhi, 2010; Wang, Ren, Liu, & Han, 2014). These meth-

ods are quite flexible in nature, and do not suffer from (i) and

(iii) mentioned above. In particular, the PSO is known to be effective

in various systems control supplication (Maruta, Kim, Song, & Sugie,

2013; Maruta, Kim, & Sugie, 2009). However, they have a serious draw

back.

(iv) In swarm based optimization (including PSO), the computation

times per iteration are proportional to the number of swarms.

As a result, these methods require heavy computation time in

the identification process, especially for static nonlinear sys-

tems with a large number of basis functions.

Hence, it is not tractable to handle static nonlinear subsystems con-

sisting of large number of basis. Consequently, these evolutional com-

putation based methods cannot avoid (ii) as well.

To the best of the authors’ knowledge, the simultaneous pertur-

bation stochastic approximation (SPSA) method (Spall, 1992) could

be only candidate to provide us with a promising tool for such sys-

tem identification problems. This is because the SPSA method is well

known to be effective for a variety of optimization problems, even for

high-dimensional parameter tuning (Ahmad, Azuma, & Sugie, 2014b).

In comparison to the existing results, the SPSA method does not suf-

fer from the afore-mentioned theoretical restrictions (i)–(iv). It may

be expected to identify both linear and nonlinear subsystems simul-

taneously, even for large number of basis functions with less com-

putational load. Meanwhile, one major drawback of SPSA may be to

guarantee the local convergence only from the theoretical points of

view.

Based on the above observations, this paper thus presents an iden-

tification method of Hammerstein systems in continuous-time us-

ing simultaneous perturbation stochastic approximation. We assume

that the structure (i.e., the system order) of the linear subsystem is

known in advance, while the structure of the nonlinear subsystem

remains unknown. Here, a piecewise affine function is then used to

approximate the unknown nonlinear function in the Hammerstein

model. Next, based on the input and output data, the SPSA-based

method is used to identify the coefficients of the linear time-invariant

(LTI) model and the piecewise affine function simultaneously. In or-

der to clarify the benefit of the SPSA-based method, a large number

of parameters in the piecewise affine function are considered here. So

far, there have been few papers discussing the identification of such

Hammerstein models. Therefore, it is worth evaluating the effective-

ness of the SPSA method.

The remainder of this paper is organized as follows. Section 2

formulates the identification problem for Hammerstein models. In

Section 3, the identification method using simultaneous perturbation

stochastic approximation-based algorithm is presented. The non-

linear function identification based on piecewise affine function is

also described in the same section. The method is validated through

several numerical examples in Section 4. Finally, some concluding

remarks are given in Section 5. This paper is based on our preliminary

version (Ahmad, Azuma, & Sugie, 2014a), published in a conference

proceedings, and contains the full explanations and experiments

omitted there.

Notation: The symbols R and R+ represent the set of real numbers

and the set of positive real numbers, respectively. For the vector θ, we

use ‖θ‖2 to express the standard Euclidean norm. For δ ∈ R+, satδ :

R
n → R

n denotes the saturation function whose ith element given as

follows:

The i-th element of satδ(x) =

⎧⎨
⎩

δ if δ < xi,

xi if − δ ≤ xi ≤ δ,

−δ if xi < −δ

where xi ∈ R is the ith element of x ∈ R
n.

2. Problem formulation

Consider the continuous-time single-input-single-output (SISO)

Hammerstein model in Fig. 1, composed of a nonlinear function f and

a linear dynamical system G described by the differential operator p

(:= d
dt

):

G(p) = B(p)

A(p)
= bm pm + bm−1 pm−1 + · · · + b0

pn + an−1 pn−1 + · · · + a0

. (1)

Here, u(t) is the input, u(t) is the unmeasurable output of the nonlin-

ear function, namely u(t) = f (u(t)), ỹ(t) is the measurement of y(t)

but is corrupted by the noise v(t). The input–output relationship is

described as follows:

ỹ(t) = G(p) f (u(t)) + v(t). (2)

In this paper, we address an identification problem of the Ham-

merstein model. Here, we assume that:

• m and n are known.
• ai(i = 0, 1, . . . , n − 1) and bi(i = 0, 1, . . . , m) are positive real

numbers.
• The function f is unknown, but f(u(t)) is a one-to-one map to u(t).

Moreover, f (0) = 0.

Fig. 1. The continuous-time SISO Hammerstein model.
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