
Expert Systems With Applications 43 (2016) 59–65

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

New graph-based algorithms to efficiently solve large scale open pit

mining optimisation problems

Shi Qiang Liu, Erhan Kozan∗

Decision Science Discipline, Mathematical Sciences School, Queensland University of Technology, 2 George St GPO Box 2434, Brisbane, Qld 4001, Australia

a r t i c l e i n f o

Keywords:

Mine optimisation algorithms

Planning and scheduling

Mine block sequencing

Ultimate pit limit

Constrained pit limit

Network flow graph

a b s t r a c t

In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-

pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit

(CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-

world instances (e.g., with 50–1000 thousand blocks) make the CPIT’s mixed integer programming (MIP)

model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances

without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods.

To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph

theory are developed by taking advantage of problem properties. The performance of our proposed algo-

rithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in

2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outper-

form other CPIT solution approaches existing in the literature. The proposed graph-based algorithms lead to

a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no

longer indispensable and random neighbourhood search is not necessary.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern mining is a complicated procedure that may sustain over

several decades and necessitate huge investment in billions of dol-

lars. To prepare for a feasibility study report at the exploration phase,

a tentative strategic mine production plan/schedule should be op-

timised, that is: which part of orebody should be selected; and in

which time period (when) the subset of blocks in this part should be

extracted. The first of these questions is answered by the ultimate pit

limit (UPIT) problem in the mining literature. As pioneers, Lerchs and

Grossmann (1965) presented to the mining community a dynamic

programming method known as the Lerchs–Grossmann approach for

UPIT. Caccetta and Giannini (1988) proposed several mathematical

theorems to improve the Lerchs–Grossmann approach. Underwood

and Tolwinski (1998) developed a dual simplex approach to solve the

UPIT model. Hochbaum and Chen (2000) presented a push-relabel

algorithm for UPIT based on the network flow graph theory. Nowa-

days, the UPIT problem has been well defined and computationally

Abbreviations: UPIT, ultimate pit limit; CPIT, constrained pit limit; PCPSP, prece-

dence constrained production scheduling problem; MineLib, a public online library of

benchmark instances’ data files and best known results of mine optimisation problems

including UPIT, CPIT and PCPSP.
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tractable to be solved even for the very large UPIT instances in today’s

computer technology.

After the determination of the ultimate pit contour, the next

widely-studied mine optimisation problem type is to answer the sec-

ond question: when the blocks should be extracted over time periods

so that the total net present value is maximised. In the mining com-

munity, this problem type is called mine production scheduling Bley,

Boland, Fricke, & Froyland, 2010; Boland, Dumitrescu, Froyland, &

Gleixner, 2009; Caccetta & Hill, 2003; Chicoisne, Espinoza, Goycoolea,

Moreno, & Rubio, 2012), or open-pit block sequencing (Cullenbine,

Wood, & Newman, 2011; Lambert, Brickey, Newman, & Eurek, 2014),

or constrained pit limit (Espinoza, Goycoolea, Moreno, & Newman,

2013; MineLib, 2013). For convenience, we use the term Constrained

Pit Limit (CPIT) to call this problem type in this paper. The following

leading papers contribute to CPIT solution approaches in the mining

optimisation literature. As a pioneer, Caccetta and Hill (2003) pro-

posed a branch-and-cut algorithm embedded LP relaxation and MIP

optimiser to solve CPIT. However, due to software commercialisa-

tion and confidentiality agreements, they only summarise some im-

portant features and the full details of all aspects of their proposed

branch-and-cut algorithm are not provided in this paper. Ramazan

(2007) proposed a “Fundamental Tree Algorithm” to aggregate the

blocks for reducing the number of variables and constraints in the

MIP model. Boland et al. (2009) developed a LP-based relaxation ap-

proach to solve large-size CPIT instances. Bley et al. (2010) improved
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the CPIT formulation by adding inequalities derived by generating

the union predecessor set to replace the immediate predecessor set.

Bienstock and Zuckerberg (2010) developed linear programming (LP)

relaxation approaches to solve CPIT efficiently. Cullenbine et al. (2011)

developed a sliding-time-window algorithm in which the relaxed

CPIT formulation models are iteratively solved by MIP optimiser over

divided time windows. Chicoisne et al. (2012) proposed a decompo-

sition method to solve the relaxed CPIT formulation model period by

period, in which there is a single capacity constraint per period. Then,

the feasible solutions of more general CPIT formulation model with

multiple capacity constraints are obtained by adding a rounding algo-

rithm based on a topological sorting algorithm. Espinoza et al. (2013)

presented a library (i.e., benchmark data and results of varied-size

instances) of open-pit mining optimisation problems such as UPIT

and CPIT to the mining community. Lambert and Newman (2014)

employed a tailored Lagrangian relaxation to efficiently solve the

CPIT formulation model. Lambert et al. (2014) concluded a tutorial

of several CPIT mathematical formulation models developed in the

literature.

The complexity of large scale CPIT problem and its variants

led to development of numerous heuristic/metaheuristic algorithms.

Kumral and Dowd (2005) developed a simulated annealing meta-

heuristic combined with Lagrangian relaxation. Ferland, Amaya, and

Djuimo (2007) developed a particle swam optimisation metaheuris-

tic for solving CPIT. Myburgh and Deb (2010) reported an application

of evolutionary algorithm to solve CPIT, in which an initial feasible

sequence of blocks represented as a chromosome is iteratively im-

proved by genetic operators such as crossover and mutation. Souza,

Coelho, Ribas, Santos, and Merschmann (2010) developed a hybrid

heuristic approach for a CPIT-type problem with the consideration

of operational constraints such as truck allocations. Martinez and

Newman (2011) developed a heuristic decomposition scheme to effi-

ciently obtain satisfactory CPIT solutions in a real-world implemen-

tation. Lamghari and Dimitrakopoulos (2012) presented a tabu search

to solve a CPIT-type problem with the consideration of metal uncer-

tainty. Alonso-Ayuso et al. (2014) developed a heuristic approach to

solve a stochastic CPIT model with the consideration of ore prices.

Lamghari, Dimitrakopoulos, and Ferland (2015) developed a two-

phase approach to solve the CPIT problem, in which the first phase

is to generate the initial solution by a series of linear programming

models and the second phase is to apply a variable neighbourhood

search procedure to improve the initial solution. Shishvan and Sattar-

vand (2015) developed an ant colony optimisation (ACO) metaheuris-

tic to solve an extended CPIT-type problem applied in a copper–gold

mine.

According to the above literature review, the following five ways

in solving large scale CPIT instances are concluded and categorised

below:

i. reduce the full model size by aggregating the blocks and periods;

ii. relax the full model complexity by decreasing the number of vari-

ables or constraints;

iii. decompose the full model into several sub-models so that much

less number of constraints and variables become tractable;

iv. embed heuristics within MIP optimiser to accelerate the solution

procedure; and

v. develop metaheuristics with neighbourhood search.

However, the above first four ways still rely on the use

of third-party MIP optimiser software and sophisticated relax-

ation/decomposition approaches. The fifth way by the development

of metaheuristics such as generic algorithm (i.e., neighbourhood

search with random diversification mechanisms) may be not ad-

vanced enough because there exists unexpected randomness in the

solution procedure and the critical CPIT problem’s structural prop-

erties are not utilised. Hence, the purpose of this study is to develop

new graph-based algorithms to outperform the existing CPIT solution

approaches in the literature.

The development of advanced mining optimisation approaches

is an active research topic in expert and intelligent systems, espe-

cially for Australian mining industry. Main Australian mining com-

panies such as BHP Billiton, Rio Tinto, Xstrata and OZ Minerals, are

keen to adopt expert systems (e.g., commercialised mining software

such as Whittle Gemcom’s strategic planning software; XPAC’s mine

block sequencing software; and Modular’s truck fleet dispatching

software) for improving their mining management systems. How-

ever, in our recent visit to Australian mine sites, we observed that

these commercialised expert systems still lack the advanced solution

approaches in optimisation engine. As the CPIT problem is NP-hard,

the required computational time of a MIP exact optimiser is increased

exponentially. For solving large scale CPIT instances without any re-

laxation/decomposition schemes, a MIP exact optimiser such as IBM

ILOG-CPLEX cannot be implemented due to memory overflow or un-

acceptable computational effort. Another practical reason is that the

mining company is not willing to buy the third-party optimiser be-

cause the licence for commercial use is costly. To fill this gap, this

study contributes to extend the boundaries of developing innovative

numerical methods to solve large scale mining optimisation prob-

lems in a more efficient and effective way.

The remainder of this paper is outlined as follows. In Section 2,

five lemmas on problem properties and the detailed procedures of

two new algorithms are presented. In Section 3, the computational

results of benchmark UPIT and CPIT instances obtained by the pro-

posed algorithms are reported and compared to the best known re-

sults in MineLib. In the last section, we conclude the contribution and

significance of this research in the last section.

2. New algorithms

The following two fundamental mathematical programming

models are given for showing the objective function and main con-

straints of the UPIT and CPIT problems respectively.

UPIT Model

Objective:

Maximise :
∑

b∈B
xb pb (1)

Subject to:

xb ≤ xb′ , ∀b ∈ B; b′ ∈ �b|�b ⊂ B (2)

xb ∈ {0, 1}, ∀b ∈ B; (3)

where xb is a binary decision variable that equals 1 if block b is se-

lected; pb is the value (positive or negative) if block b is to be mined;

B is the set of total blocks for the whole orebody; �b is the subset

of blocks that are the immediate predecessors of block b. Constraint

(2) ensures that each block should be extracted after its predecessors.

Constraint (3) defines that decision variables are binary.

CPIT Model

Objective:

Maximise :
∑

b∈B

∑

t∈T

(ybt − yb,t−1)pbt (4)

Subject to:

yb,t−1 ≤ ybt , ∀b ∈ B; t ∈ T (5)

ybt ≤ yb′t , ∀b ∈ B; b′ ∈ �b|�b ⊂ B; t ∈ T (6)

Rmin
rt ≤

∑

b∈B
(ybt − yb,t−1)ubr ≤ Rrt

max, ∀t ∈ T ; r ∈ R (7)

ybt ∈ {0, 1}, ∀b ∈ B; t ∈ T (8)

yb0 = 0, ∀b ∈ B (9)
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