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a b s t r a c t

The Multi-Depot Vehicle Routing Problem (MDVRP) is an important variant of the classical Vehicle Routing

Problem (VRP), where the customers can be served from a number of depots. This paper introduces a coop-

erative coevolutionary algorithm to minimize the total route cost of the MDVRP. Coevolutionary algorithms

are inspired by the simultaneous evolution process involving two or more species. In this approach, the prob-

lem is decomposed into smaller subproblems and individuals from different populations are combined to

create a complete solution to the original problem. This paper presents a problem decomposition approach

for the MDVRP in which each subproblem becomes a single depot VRP and evolves independently in its do-

main space. Customers are distributed among the depots based on their distance from the depots and their

distance from their closest neighbor. A population is associated with each depot where the individuals rep-

resent partial solutions to the problem, that is, sets of routes over customers assigned to the corresponding

depot. The fitness of a partial solution depends on its ability to cooperate with partial solutions from other

populations to form a complete solution to the MDVRP. As the problem is decomposed and each part evolves

separately, this approach is strongly suitable to parallel environments. Therefore, a parallel evolution strategy

environment with a variable length genotype coupled with local search operators is proposed. A large num-

ber of experiments have been conducted to assess the performance of this approach. The results suggest that

the proposed coevolutionary algorithm in a parallel environment is able to produce high-quality solutions to

the MDVRP in low computational time.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A Vehicle Routing Problem (VRP) is a generic name for a large class

of combinatorial optimization problems (Doerner & Schmid, 2010;

Montoya-Torres, Franco, Isaza, Jiménez, & Herazo-Padilla, 2015). The

goal is to find a set of routes for serving customers with a certain

number of vehicles in a given environment. In the classical VRP, a

problem instance is specified by a set of customers to be served with

their corresponding locations and demands and other primary infor-

mation such as distance between two costumers, distance between

a customer and the depot, number of vehicles and vehicle capacity
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(Baldacci & Mingozzi, 2009). In a solution, each vehicle leaves the de-

pot and executes a route over a certain number of customers before

returning to the depot, while insuring that the total demand on the

route does not exceed vehicle capacity. In some cases, a maximum

route duration (or distance) constraint is enforced. The Multi-Depot

Vehicle Routing Problem (MDVRP) is a variant of the classical VRP in

which more than one depot is considered (Cordeau & Maischberger,

2012; Escobar, Linfati, Toth, & Baldoquin, 2014; Subramanian, Uchoa,

& Ochi, 2013; Vidal, Crainic, Gendreau, Lahrichi, & Rei, 2012).

The number of studies on the MDVRP is rather limited when com-

pared to the classical VRP. A survey of these studies, based on either

exact methods or heuristics, can be found in Montoya-Torres et al.

(2015). In recent years, evolutionary-based metaheuristics proved

to be a popular approach to address this problem, as described in

Section 3. But, in spite of this popularity, no coevolutionary algorithm

has yet been proposed in the literature for the MDVRP. As the problem

can be easily decomposed into a number of single-depot VRPs, with a

http://dx.doi.org/10.1016/j.eswa.2015.08.030
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Fig. 1. MDVRP solution.

population of partial solutions associated with each depot, a coevolu-

tionary approach looks relevant. Each partial solution or individual in

a population corresponds to vehicle routes defined over the subset of

customers assigned to the corresponding depot. Although each pop-

ulation can evolve separately, this evolution is guided by the ability

of each individual to form good complete solutions with individu-

als from the other populations. This is the problem-solving approach

proposed in this work.

The remainder of this paper is organized as follows. First,

some preliminaries about the MDVRP and coevolution are found in

Section 2. Section 3 presents a literature review. Sections 4 and 5 de-

scribe the proposed methodology while Section 6 reports computa-

tional results. Future avenues for research are proposed in the con-

clusion in Section 7.

2. Preliminaries

In this section, some preliminary information about the mathe-

matical formulation of the MDVRP and cooperative coevolutionary

algorithms are presented.

2.1. Multi-Depot Vehicle Routing Problem formulation

As mentioned earlier, the MDVRP is a variant of the classical VRP

where more than one depot is considered (Montoya-Torres et al.,

2015). Fig. 1 shows a typical solution of this problem with two

depots and two vehicle routes associated with each depot. Typi-

cally, the fleet of vehicles is limited and homogeneous (Cordeau &

Maischberger, 2012; Escobar et al., 2014; Montoya-Torres et al., 2015;

Subramanian et al., 2013; Vidal et al., 2012).

Basically, a solution to this problem is a set of vehicle routes such

that: (i) each vehicle route starts and ends at the same depot, (ii)

each customer is served exactly once by one vehicle, (iii) the to-

tal demand on each route does not exceed vehicle capacity (iv) the

maximum route time is satisfied and (v) the total cost is minimized

(Montoya-Torres et al., 2015).

The MDVRP can be formalized as follows. Let G = (V, A) be a com-

plete graph, where V is the set of nodes and A is the set of arcs. The

nodes are partitioned into two subsets: the customers to be served,

VC = {1, . . . , N}, and the multiple depots VD = {N + 1, . . . , N + M},
with VC ∪ VD = V and VC ∩ VD = �. There is a non-negative cost cij as-

sociated with each arc (i, j) ∈ A. The demand of each customer is di

(there is no demand at the depot nodes). There is also a fleet of K

identical vehicles, each with capacity Q. The service time at each cus-

tomer i is ti while the maximum route duration time is set to T. A

conversion factor wij might be needed to transform the cost cij into

time units. In this work, however, the cost is the same as the time

and distance units, so wi j = 1.

In the mathematical formulation that follows, binary variables xijk

are equal to 1 when vehicle k visits node j immediately after node i.

Auxiliary variables yi are also used in the subtour elimination con-

straints.

Minimize

N+M∑

i=1

N+M∑

j=1

K∑

k=1

ci jxi jk , (1)

subject to:

N+M∑

i=1

K∑

k=1

xi jk = 1 ( j = 1, . . . , N); (2)

N+M∑

j=1

K∑

k=1

xi jk = 1 (i = 1, . . . , N); (3)

N+M∑

i=1

xihk −
N+M∑

j=1

xh jk = 0 (k = 1, . . . , K; h = 1, . . . , N + M); (4)

N+M∑

i=1

N+M∑

j=1

dixi jk ≤ Q (k = 1, . . . , K); (5)

N+M∑

i=1

N+M∑

j=1

(
ci jwi j + ti

)
xi jk ≤ T (k = 1, . . . , K); (6)

N+M∑

i=N+1

N∑

j=1

xi jk ≤ 1 (k = 1, . . . , K); (7)

N+M∑

j=N+1

N∑

i=1

xi jk ≤ 1 (k = 1, . . . , K); (8)

yi − yj + (M + N)xi jk ≤ N + M − 1;
for 1 ≤ i �= j ≤ N and 1 ≤ k ≤ K; (9)

xi jk ∈ {0, 1} ∀ i, j, k; (10)

yi ∈ {0, 1} ∀ i; (11)

The objective (1) minimizes the total cost. Constraints (2) and (3)

guarantee that each customer is served by exactly one vehicle. Flow

conservation is guaranteed through constraint (4). Vehicle capacity

and route duration constraints are found in (5) and (6), respectively.

Constraints (7) and (8) check vehicle availability. Subtour elimination

constraints are in (9). Finally, (10) and (11) define x and y as binary

variables.

In the original formulation of the MDVRP, a fixed number of ve-

hicles is allocated to each depot. In our work, though, the search is

allowed to consider a larger number of vehicles (at a penalty cost in

the objective). This is discussed in Section 5.

2.2. Coevolutionary algorithms

Coevolutionary algorithms are a class of evolutionary algorithms

inspired by the simultaneous evolution process involving two or

more species. Recently, various engineering problems have been

solved with this approach (Blecic, Cecchini, & Trunfio, 2014; Chen,

Mori, & Matsuba, 2014; Ladjici & Boudour, 2011; Ladjici, Tiguercha, &

Boudour, 2014; Wang & Chen, 2013a; Wang, Cheng, & Huang, 2014).

Coevolutionary algorithms are categorized into two groups depend-

ing on the type of interaction among the species, which can be either

competitive or cooperative. Competitive coevolution can be viewed as

an arms race, that is, individuals in the populations compete among

themselves. One group attempts to take advantage over another,

which responds with an adaptive strategy to recover the advantage

(Katada & Handa, 2010). A biological example is the predator–prey

competitive coevolution, in which the evolution of one population
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