
Expert Systems With Applications 43 (2016) 154–164

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Optimization of adaptive fuzzy logic controller using novel combined

evolutionary algorithms, and its application in Diez Lagos flood

controlling system, Southern New Mexico

Hamed Zamani Sabzi a,∗, Delbert Humberson a,b, Shalamu Abudu c, James Phillip King a,d

a Dept. of Civil Engineering, New Mexico State University, MSC 3CE, PO Box 30001, Las Cruces, NM 88003, USA
b IBWC, U.S. Section, 4117 N. Mesa, C-100, El Paso, TX 79902-1441, USA
c Xinjiang Water Resources Research Institute, No. 73, Hongyanchi North Road, Urumqi, Xinjiang, 830049, China
d Engineering Research Center for Re-inventing Urban Water Infrastructure, Stanford University, USA

a r t i c l e i n f o

Keywords:

Fuzzy logic controller

Genetic algorithm

Particle swarm optimization

ANFIS

Flood optimal management

Simulink

Dynamic model

Flood controlling systems

a b s t r a c t

In fuzzy logic controllers (FLCs), optimal performance can be defined as performance that minimizes the de-

viation (error term) between the decisions of the fuzzy logic systems and the decisions of experts. A range of

approaches – such as genetic algorithms (GA), particle swarm optimization (PSO), artificial neural networks

(ANN), and adaptive network based fuzzy inference systems (ANFIS) – can be used to pursue optimal perfor-

mance for FLCs by refining the membership function parameters (MFPs) that control performance. Multiple

studies have been conducted to refine MFPs and improve the performance of fuzzy logic systems through

the application of a single optimization approach, but since different optimization approaches yield different

error terms under different scenarios, the use of a single optimization approach does not necessarily produce

truly optimal results. Therefore, this study employed several optimization approaches – ANFIS, GA, and PSO

– within a defined search engine unit that compared the error values from the different approaches under

different scenarios and, in each scenario, selected the results that had the minimum error value. Addition-

ally, appropriate initial variables for the optimization process were introduced through the Takagi–Sugeno

method. This system was applied to a case study of the Diez Lagos (DL) flood controlling system in south-

ern New Mexico, and we found that it had lower average error terms than a single optimization approach in

monitoring a flood control gate and pump across a range of scenarios. Overall, using evolutionary algorithms

in a novel search engine led to superior performance, using the Takagi–Sugeno method led to near-optimum

initial values for the MFPs, and developing a feedback monitoring system consistently led to reliable oper-

ating rules. Therefore, we recommend the use of different methods in the search engine unit for finding the

optimal MFPs, and selecting the MFPs from the method which has the lowest error value among them.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy sets and fuzzy logic were proposed by Zadeh in 1965 (Zadeh,

1965), and these concepts have been used widely in control sys-

tems. Generally, fuzzy logic controllers (FLCs) utilize linguistic ex-

pressions to develop a quantitative relationship between the input

and output elements of the model. In order to gain output values

that are acceptably near the expected outputs, FLCs should be tuned

and optimized. To achieve this, evolutionary algorithms have been

used widely by several researchers. Khan, Choudhry, Zeeshan, and

Ali (2015) used a genetic algorithm for tuning the adaptive fuzzy
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multivariable controller applied in an air handling unit. Collotta,

Bello, and Pau (2015) have developed a combined system that uses

a wireless sensor network and multiple FLCs to dynamically control

the green time of traffic lights. Instead of one single FLC, Collotta

et al. (2015) applied multiple FLCs for controlling different traffic

phases. As compared to the use of a single FLC, the approach devel-

oped by Collotta et al. led to a higher fault tolerance, shorter wait-

ing times for arriving vehicles, higher scalability, and higher flexi-

bility with unbalanced arrival rates. Muthukaruppan and Er (2012)

used the PSO method to tune the developed MFPs of a fuzzy ex-

pert system, which was being used to diagnose coronary artery dis-

eases. They used a decision tree model to unravel the contribut-

ing attributes in coronary artery diseases and transfer into fuzzy

based rules (fuzzy expert system); then, the fuzzy expert system was

tuned by PSO. The fuzzy expert system tuned by PSO showed higher

classification accuracy (93.27%) between heart diseases and health
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conditions. Muthukaruppan and Er’s approach in using a hybrid

model that incorporated both a decision tree model and PSO led them

to higher accuracy. Wang and Altunkaynak (2011) utilized FLCs for

simulating the rainfall-runoff of a system, and Saghaei and Didekhani

(2011) used an ANFIS to derive overall utilities of projects by con-

sidering the interrelations among the involved criteria. Bingul and

Karahan (2011) used PSO for tuning an FLC that was used for con-

trolling a robot trajectory in two dimensional movement. Deka and

Chandramouli (2009) developed a hybrid model of artificial neural

network and fuzzy inference systems to find the optimized reservoir

releases. Cheng, Tsai, Ko, and Chang (2008) used a fuzzy neural infer-

ence system to optimize the decision-making processes in geotechni-

cal engineering. Shoorehdeli, Teshnehlab, and Sedigh (2007), by us-

ing the PSO method, developed a hybrid learning approach for tun-

ing the parameters of ANFIS. Ahlawat and Ramaswamy (2004) de-

veloped an optimal FLC to predict a tall building’s displacement in

windy conditions. Karaboga, Bagis, and Haktanir (2004) used a fuzzy

inference system for operating the spillway gates in a flood control-

ling reservoir. Navale and Nelson (2010, 2012), Chen and Rine (2003),

and Yang and Soh (2000) used a GA for finding the optimal param-

eters of FLCs in different engineering systems. Russell and Campbell

(1996) used fuzzy inference for finding the optimal operating rule of a

reservoir. Martinez-Soto, Castillo, Aguilar, and Melin (2010)) used GA

and PSO for tuning of FLCs’ performances.

In most studies, researchers used a single evolutionary algorithm

in tuning and optimizing FLCs. However, it is unlikely that a single

evolutionary algorithm will find the optimal solution for all encoun-

tered scenarios, and may even select a locally optimal solution rather

than a globally optimal solution. There is a crucial lack of a search en-

gines for comparing the results of different evolutionary algorithms

to ensure that the parameters of the FLCs are, in fact, optimal. This

study attempts to minimize the uncertainty level of FLC’s optimality

by defining a search engine that includes three popular evolutionary

methods. By using and comparing multiple evolutionary algorithms,

this approach increases the likelihood of identifying truly optimal

conditions and reduces the risk of selecting locally optimal condi-

tions rather than globally optimal conditions. In order to achieve an

accurate and optimal fuzzy inference system (FIS), two key factors

are significantly important: (1) discovering appropriate fuzzy rules,

and (2) applying an appropriate tuning method. Considering the in-

put and output values of an FIS, selecting the appropriate techniques

to define the optimal phases is crucially important; therefore, select-

ing the appropriate fuzzy intervals (phases) of input and output val-

ues is as important as tuning the membership functions of those in-

tervals. One of the best approaches to investigate the required struc-

ture for a fuzzy inference system is plotting the output and input val-

ues. The graphical behavior facilitates the selection of an appropri-

ate structure for the FLC (an FIS). Then, the membership function pa-

rameters of that structure can be optimized through an optimization

process.

For this study, initial membership function parameters were de-

fined based on Takagi–Sugeno fuzzy inference systems instead of

linguistic expressions which was developed by Takagi and Sugeno

(1985). The Takagi–Sugeno method was chosen due to the effect ex-

erted by inference systems on the accuracy of FLC-derived output

values. In Takagi–Sugeno systems, input variables typically are de-

fined in the form of Gaussian distributions, and output variables are

defined in the form of linear intervals or constant output values. In-

creasing the number of membership functions and intervals in the

input and output values also increases the inference system’s accu-

racy in deriving output values for specific input values.

After using the Takagi–Sugeno method to select appropriate ini-

tial membership function parameters, the FLCs utilized in the Diez

Lagos (DL) flood control system were tuned and optimized through a

novel dynamic tuning system that was developed in this study. This

dynamic tuning system simultaneously utilizes three evolutionary al-
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Fig. 1. Inflow hydrographs to the pond for floods with 100-year, 50-year, and 25-year

return periods (24-h precipitation, Storm type II).

gorithms in finding the MFPs of the FLCs. Additionally, this study de-

veloped several optimized operational plans for gate and pump oper-

ations under different flooding conditions. These plans were derived

by optimizing two FLCs, one for pump operations and the other for

gate operations.

The aim of DL pond system is to capture a total runoff volume of

about 250,000 m3. For floods that exceed the pond system’s capacity,

excess runoff must be transferred to the drainage system through the

controllable gate and pump to protect downstream residential areas.

Additionally, a significant percentage of the total captured runoff is

infiltrated to the existing aquifer system through seepage.

2. Material and methods

In this study, runoff hydrographs for the DL system were obtained

by using the soil conservation service method (SCS) for 24-h rainfall

flood events with the various return periods of 25-years, 50-years,

and 100 years.

In previous studies, Sabzi and King (2015a, 2015b) developed a dy-

namic operating system for the flood control pond in DL, simulating

the pond as a control volume where the volume change in the control

volume equals inflow to the pond minus outflow from the pond. The

outflow from the pond is considered to take three forms: outflow as

seepage to the underground aquifer, outflow through the gate to the

drainage system, and outflow through the pump to the drainage sys-

tem. The pump system and gate have not yet been installed, but river

aggradation has severely limited the ability to release water by grav-

ity through the drainage system. Part of the objective of this study

was to provide a basis for sizing the proposed gate and pump systems.

Although evapotranspiration could have been considered as another

outflow, it was neglected in Sabzi and King’s simulation process in

order to develop a conservative scenario that minimized risk to the

downstream residential area. Therefore, the general control volume

was formulated as follows:

Q in − Q out = A
dh

dt
= Q in − Q seepage − Q gate − Q pump (1)

where, for a specific simulation duration, Qin is the inflow to the pond

and Qout is total outflow from the pond. Qout, in turn, includes seepage

(Qseepage), outflow from the gates (Qgates), and outflow from the pump

(Qpump).

The inflow hydrographs to the DL pond for return periods of

100-year, 50-year, and 25-year for 24-h duration were calculated

using HEC-HMS software developed by U.S. Army Corps of Engi-

neers (USACE) (2014) and are shown in Fig. 1. The variation of ac-

cumulated outflows from the gate against accumulated inflow to the

pond for flood return periods of 100-years, 50-years, and 25-years

is shown in Fig. 2. Those variations were simulated for simulation
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