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a b s t r a c t

An artificial neural network (ANN) is a mathematical model that is inspired by the operation of biological
neural networks. However, this is typically considered a computational model. An ANN can easily adapt
to multiple situations and extract information that is apparently hidden in a system.

An ANN can be used in three basic configurations: mapping, auto-association and classification. An
ANN in a mapping configuration can be used to model a two port system with inputs and outputs. There-
fore, a vapor compression system can be modeled using an ANN in a mapping configuration. That is, some
parameters from the compression system can be used for input while other parameters can be used as
output. The simulation experiments include the design, training and validation of a set of ANNs to find
the best architecture while minimizing over-fitting.

This paper presents a new method to model a variable speed vapor compression system. This method
accurately estimates the number of neurons in the hidden layer of an ANN. The analysis and the exper-
imental results provide new insights to understand the dependency between the input and output
parameters in a vapor compression system, concluding that the model can predict the energetic perfor-
mance of a variable speed vapor compression system. Additionally, the simulation results indicate that an
ANN can extract, from the data sets, information that is implicit in the configuration of the vapor com-
pression system.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The vapor compression cycle is the most extended system for
cold generation. It is largely used in domestic, commercial, and
industrial refrigeration (including air conditioning systems). These
systems typically present a high energy consumption, see Buzelin,
Amico, Vargas, and Parise (2005), and this consumption may in-
crease in case of system failure. In order to reduce their consump-
tion, it is necessary to have efficient systems and operate them
properly. Therefore, it is convenient to design computational mod-
els to analyze and simulate a cooling facility in order to improve its
energetic performance.

Different models of vapor compression systems have been
developed (Guo-liang, 2007). Some of them are based on a physical
model to predict the system performance, (Belman, Navarro-Esbr,
Ginestar, & Milian, 2009; Saiz, Gonzales, & Ianella, 2002). These
physical models frequently require some geometrical parameters
that are difficult to obtain or some operating parameters that are
not available. Because it is difficult to accurately characterize a

refrigeration system, empirical models have been proposed and
used. Examples of empirical models may be based on a polynomial
curve, a regression analysis or an artificial neural network. Several
studies of neural networks related to HVAC& R research can be
found in Mohanraj, Jayaraj, and Muraleedharan (2012).

An ANN has been used by several researches for evaluation and
analysis of a vapor compression system, see Esen, Inalli, Sengur,
and Esen (2008) and Secan (2011); for thermodynamic analysis
see Kizilkan (2011); for determination of thermodynamic proper-
ties see Sözen, Arcaklioglu, Menlik, and Özalp (2009), and for the
performance of individual components such as the compressor
see Yang, Zhao, Zhang, and Gu (2009).

This paper presents the development and validation of a vari-
able speed vapor compression system using artificial neural net-
works. The input parameters of the model are: compressor
rotation speed, volumetric flow rates, and temperatures of the sec-
ondary fluids (at the evaporator inlet and at the condenser inlet).
Note that these input parameters can be easily obtained in this
kind of installation when measurement devices are set up.

2. System test bench

The test bench of the vapor compression system, used to devel-
op and validate the neural network model, is shown in Fig. 1. The
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experimental test bench basically consists of: one vapor compres-
sion circuit and two secondary fluids circuits. The vapor compres-
sion circuit is a single-stage compression system using the working
fluid R134a. This circuit has: an open type variable speed compres-
sor, a shell-and-tube evaporator, a shell-and-tube condenser, and a
thermostatic expansion valve. Inside the evaporator, the refriger-
ant flows within the tubes, and a brine of water-propilenglycol
(50/50 % by volume) is used as secondary fluid. In the interior of
the condenser, the refrigerant flows along the shell while the sec-
ondary fluid (water) flows inside the tubes.

The secondary fluid circuits are: the load simulation system and
the condensing system. The load simulation system consists of a
tank (with several electrical resistances to control the thermal load
of the evaporator), a variable speed pump, and a temperature con-
trol. The condensing system sets the water conditions at the con-
denser using a commercial chiller with variable speed pump.
With these two systems, it is possible to control the conditions
of the secondary fluids at the evaporator and at the condenser.
Fig. 2 shows the schematic diagram of the test facility representing
the principal components of the vapor compression circuit.

The experimental facility has several sensors to measure key
variables such as: pressure, temperature, volumetric flow rate,
mass flow rate, compressor speed, and energy consumption. Ta-
ble 1 presents a summary of the variables measured. The table also
includes the type of sensor used, and the uncertainty associated
with each measurement. The signals generated by all sensors, as
well as those provided by the measuring devices, were gathered
using a PC-based data acquisition system SCXI 1000 from National
Instruments.

Several experimental test were carried out to collect 38,071
samples of the system including transient and stationary states.
Table 2 shows the operating ranges covered by the different tests
used to train and validate the neural network model.

The tests used to develop and validate the model are carried out
in a wide range of operating conditions (see Table 2).

3. Artificial neural networks

An artificial neural network (ANN) is a computational method
inspired in biological processes, see Russel and Norvig (2009). An
ANN can adapt to solve a broad kind of problems where a mathe-

Fig. 1. The test bench of the vapor compression system.

Fig. 2. Schematic diagram of the vapor compression system.

Table 1
Measured parameters and uncertainty.

Parameter Instrument Uncertainty

Volumetric flow Electromagnetic flow-meter ±0.33%
Temperature K-type thermocouples ±0.3 K
Power Digital wattmeter ±0.5%
Mass flow Coriolis flow-meter ±0.22%
Rotation speed Inductive sensor ±1%

Table 2
Range of operating conditions in the experimental tests.

Parameter Notation Unit Range

Compressor rotation speed VN rpm 400–560
Evaporator volumetric flow Vevap m3/h 1.5–3.0
Condenser volumetric flow Vcond m3/h 0.6–1.2
Condenser input temperature Tcond�in �C 15–30
Evaporator input temperature Tevap�in �C 7–17
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