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a b s t r a c t

The back propagation neural network (BPNN) can easily fall into the local minimum point in time series
forecasting. A hybrid approach that combines the adaptive differential evolution (ADE) algorithm with
BPNN, called ADE–BPNN, is designed to improve the forecasting accuracy of BPNN. ADE is first applied
to search for the global initial connection weights and thresholds of BPNN. Then, BPNN is employed to
thoroughly search for the optimal weights and thresholds. Two comparative real-life series data sets
are used to verify the feasibility and effectiveness of the hybrid method. The proposed ADE–BPNN can
effectively improve forecasting accuracy relative to basic BPNN, autoregressive integrated moving
average model (ARIMA), and other hybrid models.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Time series forecasting is an important area in forecasting. One
of the most widely employed time series analysis models is the
autoregressive integrated moving average (ARIMA), which has
been used as a forecasting technique in several fields, including
traffic (Kumar & Jain, 1999), energy (Ediger & Akar, 2007), economy
(Khashei, Rafiei, & Bijari, 2013), tourism (Chu, 2008), and health
(Yu, Kim, & Kim, 2013). ARIMA has to assume that a given time ser-
ies is linear (Box & Jenkins, 1976). However, time series data in
real-world settings commonly have nonlinear features under a
new economic era (Lee & Tong, 2012; Liu & Wang, 2014a, 2014b;
Matias & Reboredo, 2012). Consequently, ARIMA may be unsuit-
able for most nonlinear real-world problems (Khashei, Bijari, &
Ardali, 2009; Zhang, Patuwo, & Hu, 1998). Artificial neural net-
works (ANNs) have been extensively studied and used in time ser-
ies forecasting (Adebiyi, Adewumi, & Ayo, 2014; Bennett, Stewart,
& Beal, 2013; Geem & Roper, 2009; Zhang, Patuwo, & Hu, 2001;
Zhang & Qi, 2005). Zhang et al. (1998) presented a review of ANNs.
The advantages of ANNs are their flexible nonlinear modeling
capability, strong adaptability, as well as their learning and mas-
sive parallel computing abilities (Ticknor, 2013). Specifying a par-
ticular model form is unnecessary for ANNs; the model is instead
adaptively formed based on the features presented by the data.

This data-driven approach is suitable for many empirical data sets,
wherein theoretical guidance is unavailable to suggest an appro-
priate data generation process. The forward neural network is
the most widely used ANNs. Meanwhile, the back propagation neu-
ral network (BPNN) is one of the most utilized forward neural net-
works (Wang, Zeng, Zhang, Huang, & Bao, 2006). BPNN, also known
as error back propagation network, is a multilayer mapping net-
work that minimizes an error backward while information is
transmitted forward. A single hidden layer BPNN can generally
approximate any nonlinear function with arbitrary precision
(Aslanargun, Mammadov, Yazici, & Yolacan, 2007). This feature
makes BPNN popular for predicting complex nonlinear systems.

BPNN is well known for its back propagation-learning algo-
rithm, which is a mentor-learning algorithm of gradient descent,
or its alteration (Zhang et al., 1998). According to the theory, the
connection weights and thresholds of a network are randomly ini-
tialized first. Then, by using the training sample, the connection
weights and thresholds of the network are adjusted to minimize
the mean square error (MSE) of the network output value and
actual value through gradient descent. When the MSE achieves
the goal setting, the connection weights and thresholds are deter-
mined, and the training process of the network is finished. How-
ever, one flaw of this learning algorithm is that the final training
result depends on the initial connection weights and thresholds
to a large extent. Hence, the training result easily falls into the local
minimum point rather than into the global optimum; thus, the net-
work cannot forecast precisely. To overcome this shortcoming,
many researchers have proposed different methods to optimize
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the initial connection weights and thresholds of traditional BPNN.
Yam and Chow (2000) proposed a linear algebraic method to select
the initial connection weights and thresholds of BPNN. Intelligent
evolution algorithms, such as the genetic algorithm (GA) (Irani &
Nasimi, 2011) and particle swarm optimization (PSO) (Zhang,
Zhang, Lok, & Lyu, 2007), have also been used to select the initial
connection weights and thresholds of BPNN. The proposed models
are superior to traditional BPNN models in terms of convergence
speed or prediction accuracy.

As a novel evolutionary computational technique, the differen-
tial evolution algorithm (DE) performs better than other popular
intelligent algorithms, such as GA and PSO, based on 34 widely
used benchmark functions (Vesterstrom & Thomsen, 2004). Com-
pared with popular intelligent algorithms, DE has less complex
genetic operations because of its simple mutation operation and
one-on-one competition survival strategy. DE can also use individ-
ual local information and population global information to search
for the optimal solution (Wang, Fu, & Zeng, 2012; Wang, Qu,
Chen, & Yan, 2013; Zeng, Wang, Xu, & Fu, 2014). DEs and improved
DEs are among the best evolutionary algorithms in a variety of
fields because of their easy implementation, quick convergence,
and robustness (Onwubolu & Davendra, 2006; Qu, Wang, & Zeng,
2013; Wang, He, & Zeng, 2012). However, only a few researchers
have used the DE to select suitable BPNN initial connection
weights and thresholds in time series forecasting. Therefore, this
study uses adaptive DE (ADE) to select appropriate initial connec-
tion weights and thresholds for BPNN to improve its forecasting
accuracy. Two real-life time series data sets with nonlinear and
cyclic changing tendency features are employed to compare the
forecasting performance of the proposed model with those of other
forecasting models.

The remainder of this paper is organized as follows. Section 2
discusses the ADE–BPNN model, including theory of BPNN in time
series forecasting and the ADE process. Section 3 presents two
numerical examples. Section 4 concludes the study.

2. BPNN with DE

2.1. BPNN for time series forecasting

A single hidden layer BPNN consists of an input layer, a hidden
layer, and an output layer as shown in Fig. 1. Adjacent layers are
connected by weights, which are always distributed between �1
and 1. A systematic theory to determine the number of input nodes
and hidden layer nodes is unavailable, although some heuristic
approaches have been proposed by a number of researchers

(Zhang & Subbarayan, 2002; Zhang et al., 1998). None of the
choices, however, works efficiently for all problems. The most com-
mon means to determine the appropriate number of input and hid-
den nodes is via experiments or by trial and error based on the
minimum mean square error of the test data (Hosseini, Luo, &
Reynolds, 2006).

In the current study, a single hidden layer BPNN is used for one-
step-ahead forecasting. Several past observations are used to fore-
cast the present value. That is, the input is yt�n,yt�n+1, . . .,yt�2, yt�1;
and yt is the target output. The input and output values of the
hidden layer are represented as Eqs. (1) and (2), respectively.
The input and output values of the output layer are represented
as Eqs. (3) and (4), respectively. The equations are given as
follows:

Ij ¼
Xt�1

i¼t�n

wji � yi þ bj ðj ¼ 1; . . . ;hÞ; ð1Þ

yj ¼ f hðIjÞ ðj ¼ 1; . . . ; hÞ; ð2Þ

Io ¼
Xh

j¼1

woj � yj þ ao ðo ¼ 1Þ; ð3Þ

yt ¼ f oðIoÞ ðo ¼ 1Þ; ð4Þ

where I denotes the input; y denotes the output; yt is the forecasted
value of point t; n and h denote the number of input layer nodes and
hidden layer nodes, respectively; wji denotes the connection
weights of the input and hidden layers; and woj denotes the connec-
tion weights of the hidden and output layers. bj and ao are the
threshold values of the hidden and output layers, respectively,
which are always distributed between �1 and 1. fh and fo are the
activation functions of the hidden and output layers, respectively.
Generally, the activation function of each node in the same layer
is the same. The most widely used activation function for the output
layer is the linear function because the nonlinear activation func-
tion may introduce distortion to the predicted output. The logistic
and hyperbolic functions are frequently used as the hidden layer
activation functions (Zhang et al., 1998).

2.2. DE and ADE

2.2.1. Standard DE
The standard DE consists of four main operations: initialization,

mutation, crossover, and selection. Details are discussed as
follows:

(1) Initialization: Real number coding is used for the DE. In this
operation, several parameters, including population size N,
length of chromosome D, scaling or mutation factor F, cross-
over rate CR, and the range of gene value [Umin, Umax], are ini-
tialized. The population is randomly initialized with Eq. (5),
as follows:

xij ¼ Umin þ rand� ðUmax � UminÞ; ð5Þ

where i = 1,2, ...,N, j = 1,2, ...,D, and rand is a random number
with a uniform probability distribution.

(2) Mutation: For each objective individual xG
i , i = 1,2, . . .,N, the

standard DE algorithm generates a corresponding mutated
individual, which is expressed by Eq. (6):

vGþ1
i ¼ xG

r1
þ F � xG

r2
� xG

r3

� �
; ð6Þ

where the individual serial numbers r1, r2, and r3 are different
and randomly generated. None of the numbers is identical to
the objective individual serial number i. Therefore, the popu-
lation size N P 4. The scaling factor F, which controls the
mutation degree, is within the range of [0,2], as mentionedFig. 1. Single hidden layer BPNN structure.
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