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a b s t r a c t

The non-linear vibrations of a barrel, induced by the interaction with a high-speed moving projectile,
negatively affect the shooting accuracy of a weapon. This study presents a new method that determines
the non-linear behavior of the barrel with a passive vibration absorber and optimizes the absorber using
the genetic algorithm (GA). Since both the barrel geometry and its coupling with the absorber are non-
linear, a new finite element method (FEM) approximation has been developed for the interaction of barrel
and projectile and combined with the classical finite element method. The final coupled equation of
motion of entire system has been solved by a step by step integration, and for minimum tip deflection
of the barrel, a GA has been then used in order to optimize the some parameters of the absorber. The
results of analyses of the proposed FEM model were compared, and a good agreement was seen with
the existing literature. In another example, the FEM–GA integrated optimization procedure was also used
for the optimization of a passive vibration absorber, and a more accurate result (0.5% better) was
obtained when compared to the experimental study given in literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic behavior of a structural system subjected to a
moving mass is a key problem for defense systems, machine design
and civil constructions, which have been studied by several
researchers. For example, FEM solutions of some different kinds
of moving mass problems are given by Esen (2011, 2013), Kahya
(2012), Sharbati and Szyszkowski (2011), Wu, Whittaker, and
Cartmell (2001). An analytical solution of moving-load-motion
for Timoshenko beams can be found in Lee (1996). The importance
of dynamic behavior of structural systems, subjected to a variable
velocity load, has been increasing, and some researchers Dyniewicz
and Bajer (2012), Lee (1996), Michaltsos (2002), Wang (2009) have
studied the dynamic behavior of different kinds of beams under
accelerating loads. Inertia effects of a moving mass still continue
to be a point of interest for bridge dynamics, railroad design and
other high-velocity delicate motion processes, and studies like
Dehestani, Mofid, and Vafai (2009), Michaltsos and Kounadis
(2001), Michaltsos, Sophianopoulos, and Kounadis (1996) are
valuable in this respect. The accurate solution of moving mass
problems has been facilitated via the usage of computers, and

the study Bulut and Kelesoglu (2010) has compared numerical
methods for response of beams, while the others (Ataei &
Mohammadzade, 2010; Nikkhoo, Rofooei, & Shadnam, 2007) have
studied the modal control of beams under the effect of a traveling
mass.

The moving load problem is also vital for defense industries in
order to provide an accurate shooting for Cannons, and the study
Tawfik (2008) is valuable for the effects of an unbalanced mass
of a projectile on the vibration of a barrel. Balla (2011) has studied
the eight degree of freedom model of a weapon system with its
body, and analysed the vibration of its barrel. In order to compare
the results between modeling and actual test data, Alexander
(2007) has modeled and analysed the projectile and barrel interac-
tion dynamics, and then compared analysis results to the test data
of 155 mm cannon. Researchers (Littlefield, Kathe, Messier, &
Olsen, 1997, 2002) have studied the dynamics of barrels and pro-
posed a muzzle-brake for reducing the tip-deflection of a
120 mm-cannon-barrel. It was reported that, the muzzle-brake,
working as a passive vibration absorber, could reduce the deflec-
tion of the barrel by about half. As any moving load-structure
interaction problem may be found in a lot of application fields,
the studies Bathe (1982), Clough and Penzien (2003), Fryba
(1999), Reddy (1984), Wilson (2002) can be considered valuable
references for analytical and FEM solutions of systems affected
by a moving mass.
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In order to get more efficient and economical solutions, artifi-
cially intelligent techniques (GA, fuzzy logic, neural network,
etc.) have been applied to many complex engineering problems
such as the damage identification of structures (Guo & Li, 2012;
Miguel, Miguel, Kaminski, & Riera, 2012), vibration analysis and
control (Ebersbach & Peng, 2008; Wang, Wang, & Chai, 2013),
vibration absorber optimization (Torbati, Keane, Elliott, Brennan,
& Rogers, 2003).

Optimization in engineering problems has always been of an
important topic and interest in solving complex and nonlinear
real-world problems like Zadeh, Salehpour, Jamali, and Haghgoo
(2010). GA has turned out to be a powerful tool in the field of glo-
bal optimization and has been applied successfully to real-world
problems and exhibited, for a better search efficiency, compared
to the traditional optimization algorithms by Chou, Wu, and
Chen (2010). On the other hand, GA is the most popular method
to optimize a structural system by determining fitness function
and coding its parameters.

The studies given in existing literature are generally analytical
methods and used for simplified cases of applications. In addition,
there are also some experimental ones, yet they are expensive and
time-consuming since they need many cases of trial and error
works. However, the passive vibration absorbers are commonly
used in industry in a lot of practical applications from machine
tools to transportation vehicles. Moreover, especially for complex
systems, the determination of the accurate dimensions and masses
are impossible due to the non-linear behavior of the systems, and
an experimental study may be inevitable. Vibrations of a barrel in
gun systems is very vital and should be damped or reduced in
order to provide better shooting accuracy. Besides, the determina-
tion of the non-linear dynamic behavior of such system is very
hard, and studies in this area are limited, and those in this field
are only for simple cases. For this reason, a more accurate and easy
method is necessary in order to define the nonlinear behavior of a
vibrating system such as gun barrels and the design and optimiza-
tion of a passive vibration absorber for reducing the vibrations of
main systems. This study presents a new optimization algorithm
that combines the classical FEM and GA, and can also be used for
the determination and analyses of the nonlinear vibrations of
systems by using an algorithm that contains a step-by-step time
integration method (Wilson, 2002). The FEM model was validated
by being adapted to a simply-supported beam under a moving
load, which had been studied widely in literature. Another
numerical example given in this study is that the developed
method has been used for investigating the dynamics of an
anti-craft cannon barrel and optimization of a passive absorber
for the barrel. Using the current method, a more accurate result
(see Table 3) was obtained when compared to that of the
experimental study.

2. Mathematical modeling

2.1. Finite element equation of a barrel element under an accelerating
projectile

For the interaction of an accelerating projectile with the mass
mp and the barrel, a clamped-free cantilevered Euler–Bernoulli
beam shown in Fig. 1 is considered. The projectile moves from
the left end of barrel to the right end with a variable velocity
vm(t), and a constant acceleration am. Fig. 2 shows mesh discretion
of the barrel-beam under accelerating projectile and absorber,
while Fig. 3 shows the sth beam element over which the projectile
mp passes at time t. The sth barrel element that interacts with pro-
jectile has three equivalent nodal forces as well as displacements at
each nodal point.

When the barrel is in vibration, the transverse (z) and longitu-
dinal (x) force components between the projectile and the beam,
induced by the vibration and curvature of the deflected beam,
are given by (Fryba, 1999):

f zðx; tÞ ¼ mpg �mp
d2wzðxp; tÞ

dt2

" #
dðx� xpÞ;

f xðx; tÞ ¼ mp
d2wxðxp; tÞ

dt2 dðx� xpÞ; ð1Þ

where fz(x, t) and fx(x, t) are the applied forces by the projectile at
point x at time t. d(x � xp) and g are respectively the Dirac-delta
function and gravitational acceleration. The time dependent posi-
tion, velocity and acceleration of the projectile are:

xp ¼ x0 þ v0t þ amt2=2; dxp=dt ¼ v0 þ amt; d2xp=dt2 ¼ am; ð2Þ

where, x0 and v0 are respectively the initial position and initial
speed of the projectile when the time is zero.

The longitudinal and transverse equivalent nodal forces of the
sth beam element under a lumped projectile mass are derived from
Eq. (1) using the total differentiation with respect to the variable
contact point (x = xm), and they are as follows:

f si ¼ /imp
@2wxðx; tÞ

@t2 ði ¼ 1;4Þ;

f si ¼ /imp
@2wzðx; tÞ

@t2 þ 2/impvðtÞ
@2wzðx; tÞ
@x@t

þ /impvðtÞ2
@2wzðx; tÞ

@x2

þ /impam
@wzðx; tÞ

@x
þ /impg ði ¼ 2;3;5;6Þ; ð3Þ

where /i (i = 1–6) are interpolation functions of a beam element
given by (Clough & Penzien, 2003):
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The other property matrices of a barrel element in Fig. 3, having
both transverse and longitudinal nodal forces and deflections, are
derived from the usage of the principle of virtual works. Introduc-
ing the principle of virtual displacements, and applying unit dis-
placements at the nodal points and then equating the work done
by the external forces to the work done on the internal forces:
WE = WI (Clough & Penzien, 2003; Smith & Griffiths, 2004) for a
uniform beam segment using the interpolation functions of Eq.
(4), the stiffness equation may be expressed by

ff sisg ¼ ½Ke�fusig: ð5Þ

Any stiffness coefficient associated with beam flexure and axial
displacements in Eq. (5) is as follows:

kij ¼
Z l

0
EIðxÞ/00i ðxÞ/

00
j ðxÞdx; ði; j ¼ 2;3;5;6Þ;

kij ¼ �
Z l

0
EA/0iðxÞ/

0
jðxÞdx; ði; j ¼ 1;4Þ: ð6Þ

In the same manner, for the relation between nodal accelera-
tions and resisting inertial forces, the elemental balance equation
can be obtained. The mass coefficients are computed in this way,
using the same interpolation functions which are used for calculat-
ing the stiffness coefficients. In the special case of a beam with uni-
formly distributed mass, the results are (Clough & Penzien, 2003):

ff sibg ¼ ½Me�f€usig: ð7Þ
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