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a b s t r a c t

In this paper we propose a novel neighborhood classifier, Surrounding Influence Region (SIR) decision rule.
Traditional Nearest Neighbor (NN) classifier is a distance-based method, and it classifies a sample using a
predefined number of neighbors. In this study neighbors of a sample are determined using not only the
distance, but also the connectivity and density information. One of the well-known proximity graphs,
Gabriel Graph, is used for this purpose. The neighborhood is unique for each sample. SIR decision rule
is a parameter-free approach. Our experiments with artificial and real data sets show that the perfor-
mance of the SIR decision rule is superior to the k-NN and Gabriel Graph neighbor (GGN) classifiers in
most of the data sets.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classification problem includes the prediction of the class label
of a sample. When it is difficult to estimate the probability density
distribution of a data set, non-parametric approaches are used for
classification. k-Nearest neighbor (k-NN) decision rule (Cover &
Hart, 1967; Duda & Hart, 1973) is one of the most widely used
non-parametric classifiers. It is a distance-based method that clas-
sifies a sample according to the labels of its k closest neighbors.
Although it is simple and effective, k-NN decision rule has two
main drawbacks: (1) neighborhood definition is solely based on
the distance information. How the nearest neighbors are distrib-
uted around the sample point is not addressed. (2) Classification
accuracy is sensitive to parameter k, which should be provided a
priori.

Several variants of k-NN decision rule are proposed in order to
overcome these drawbacks. For a comprehensive survey about the
methods for improving the accuracy of k-NN, one can refer to Jiang,
Cai, Wang, and Jiang (2007).

A stream of research aims to improve k-NN by selecting a suit-
able neighborhood size (Guo, Wang, Bell, Bi, & Greer, 2003; Jiang,
Zhang, & Cai, 2006; Xie, Hsu, Liu, & Lee, 2002). Xie et al. (2002) pro-
pose a selective neighborhood based Naïve Bayes algorithm for
lazy classification. In the algorithm, first, multiple classifiers on
multiple neighborhoods with different radius are constructed.
Then, the classifier with the highest accuracy is selected for the
classification of the samples. Jiang et al. (2006) combine eager
learning with lazy learning. First, best value of k is learned to fit

the training data set. Second, classification is performed using a
local Naïve Bayes with the best value of k. These approaches focus
on learning the best value of k for the entire data set. However, the
local characteristics around a sample, i.e. density and connectivity
relations, are not addressed.

Guo et al. (2003) attempt to incorporate the density concept
into the neighborhood definition, and propose the k-NN model.
They extract the largest neighborhoods with the maximum num-
ber of points covered with the same class label. If a new sample
falls into a neighborhood, it is assigned to the corresponding class.
Otherwise, it is assigned to the class having the minimum distance
between the sample and the closest boundary. k-NN model gener-
ates spherical shaped neighborhoods. This gives rise to classifica-
tion errors, when the data set includes classes with noise, density
differences and arbitrary shapes.

Another research stream is motivated by the effective use of
proximity graphs (Toussaint, 2002) in pattern recognition. With
the help of the proximity graphs such as Gabriel Graph (GG) and
Relative Neighborhood Graph (RNG), the connectivity relations
are incorporated into the neighborhood definition (Devroye,
Gyorfi, & Lugosi, 1996; Jaromczyk & Toussaint, 1992; Sanchez,
Pla, & Ferri, 1997a). Devroye et al. (1996) propose a decision rule
in which a sample is classified according to the majority of the
votes among its Gabriel Graph (GG) neighbors. Sanchez et al.
(1997a) extend this idea for other proximity graphs such as Rela-
tive Neighborhood Graph. Incorporating connectivity provides
some improvement in the data sets with density differences, but
a sample may still have neighbor mixes from other classes due to
the connected graph property. Proximity graphs are also used for
prototype selection, which focuses on the selection of a sufficiently
small subset of prototypes and the elimination of erroneous
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prototypes from the original data set (Bhattacharya, Mukherjee, &
Toussaint, 2005; Sanchez, Pla, & Ferri, 1997b; Toussaint & Berzan,
2012).

In k-NN it is assumed that k neighbors have equal influence in
the voting. In an alternative scheme, different weights are allocated
to the k neighbors based on their distances to the new sample to
improve the classification accuracy (Dudani, 1976; Hattori &
Takahashi, 1999; Parvin, Alizadeh, & Minaei, 2008; Zeng, Yang, &
Zhou, 2009; Zhou & Chen, 2006). There are also other variants of
k-NN such as weight allocation based on ranking (Bagui, Bagui, &
Pal, 2003) and clustering the neighbors (Zhou, Li, & Xia, 2009). A
shortcoming of these approaches is the sensitivity of the classifica-
tion accuracy to the selection of weights.

To address the limitations of the aforementioned methods, we
aim to develop a parameter-free neighborhood classifier. For this
purpose, first, we extract a sufficiently large neighborhood around
each sample point using the distance, density and connectivity
relations. We conceive of two important properties for the neigh-
borhood concept: (1) the neighbors should be close to the sample.
(2) The neighbors should lie homogeneously around the sample
(Sanchez et al., 1997a). We use GG to define the density-based con-
nectivity, and construct a unique neighborhood for each sample.
This neighborhood is called Surrounding Influence Region (SIR). Sec-
ond, we propose a novel neighborhood classifier based on SIR. We
demonstrate the performance of the proposed approach in the arti-
ficial and real data sets.

A density-based connectivity scheme is also adopted in DBSCAN
(Ester, Kriegel, Sander, & Xu, 1996), which is a well-known density-
based clustering algorithm. In DBSCAN the neighborhood of a point
is defined as the hypersphere with a given radius, and the density
is defined as the number of points falling in this neighborhood.
Clusters are generated using the points with the neighborhoods
that satisfy a given density threshold. Hence, the radius of the
neighborhood and the density threshold are two important param-
eters that affect the density-based connectivity relations among
the points. These two parameters define a single density region,
so this approach gives rise to neighborhood mixes in the data sets
with varying densities. Different from DBSCAN, SIR is a parameter-
free approach, and it avoids generalizations about the data set.
Instead, it extracts the density and connectivity relations in an
adaptive manner. Moreover, the neighborhood of a point is not
restricted to a hypersphere. This helps determine a unique neigh-
borhood for each point. In addition, it can handle the data sets with
varying density.

To sum up, the contributions of our study are fourfold: (1) the
neighbors of a sample are determined using not only the distance,
but also the connectivity and density relations. (2) The neighbor-
hood of a sample is uniquely determined. (3) There is no general-
ization about the local characteristics and neighborhoods in a
data set. (4) The proposed neighborhood classifier is a parame-
ter-free approach.

The rest of the paper is organized as follows. We provide the
related work and the shortcomings of k-NN and previous
approaches in Section 2. We introduce the novel neighborhood
decision rule in Section 3. We compare the proposed decision rule
with the competing decision rules, and provide the experimental
results in Section 4. Finally, we conclude in Section 5.

2. Related work

2.1. The k-NN decision rule and Gabriel Graph neighbor decision rule

Given a set of prototypes D, a sample x and parameter k, the
k-NN decision rule (Cover & Hart, 1967; Duda & Hart, 1973) is as
follows:

� Determine k nearest neighbors of sample x, KNNx = {a1, . . .,
ak}.

� Assign sample x to the class with the majority of votes in
KNNx (resolve ties randomly).

The k-NN decision rule is sensitive to the value of k. Moreover,
the size of the training set affects the performance of the k-NN.

Gabriel Graph neighbor (GGN) decision rule (Devroye et al.,
1996; Sanchez et al., 1997a) is derived from GG to overcome some
of the limitations of the k-NN. It considers the prototypes that are
around and relatively close to the sample.

Let D be the set of prototypes, p be a sample and dxp be the
Euclidean distance between sample x and prototype p in Rd. Proto-

type p is a GG neighbor of sample x if dxp 6 minzf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

xz þ d2
zp

q
: z 2 Dg.

In other words, prototype p is a GG neighbor of sample x if no other
point lies inside the hypersphere centered at their middle point
and whose diameter is the distance between them. Then, GGN
decision rule becomes as follows:

� Determine GG neighbors of sample x, GGNx = {a1, . . ., am}
where m 6 |D|.

� Assign sample x to the class with the majority of votes in
GGNx (resolve ties randomly).

2.2. Shortcomings of k-NN and GGN decision rules

We consider a 2-dimensional example data set. The data set
includes 82 prototypes and four classes as shown in Fig. 1(a).

The correct class for samples A and B is Class 1. Fig. 1(b) and (c)
present the neighborhoods generated by 1-NN and 3-NN, respec-
tively. Both decision rules misclassify sample A whereas they
assign sample B to the correct class. In Fig. 1(d) GG neighbors result
in a tie between the Classes 1 and 4 for sample A. If the tie is bro-
ken randomly, the probability of classifying sample A correctly is
0.50. GGN decision rule misclassifies sample B in Fig. 1(d). Both
samples are located in the boundary of Classes 1 and 4. Sample A
is close to both classes. Taking into account the distance relations
is not sufficient. The only way to classify sample A correctly is by
exploration of the connectivity of neighbors and the density
change between two classes. Sample B is a misclassification exam-
ple when only proximity relations are considered. Sample B can
also be classified correctly by embedding the density information.

3. The SIR decision rule

3.1. Definitions

In this section we provide the definitions used in the SIR deci-
sion rule. Let D be the set of data points, and dpq be the Euclidean
distance between points p and q in Rd.

Definition 1. Points p and q are directly connected by an edge of the

GG if and only if dpq 6 minzf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

pz þ d2
zq

q
: z 2 Dg; or equivalently,

B(s, dpq/2) \ D = £; where s is the midpoint on the line connecting
points p and q, and B(s, r) denotes the set of points included in an
open hyperball centered at point s with radius r, i.e. B(s, r) = {z:
dsz < r, s – z}.

Definition 2. Points p and q are indirectly connected if the hyperball
centered at their midpoint with diameter dpq, B(s, dpq/2), contains
at least one other point of D in its interior.

Indirect connection implies that there exists at least one path
between the two points whose maximum edge length is shorter
than dpq.
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