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a b s t r a c t

Most understandable classifiers are based on contrast patterns, which can be accurately mined from deci-
sion trees. Nevertheless, tree diversity must be ensured to mine a representative pattern collection. In
this paper, we performed an experimental comparison among different diversity generation procedures.
We compare diversity generated by each procedure based on the amount of total, unique, and minimal
patterns extracted from the induced tree for different minimal support thresholds. This comparison,
together with an accuracy and abstention experiment, shows that Random Forest and Bagging generate
the most diverse and accurate pattern collection. Additionally, we study the influence of data type in the
results, finding that Random Forest is best for categorical data and Bagging for numerical data.
Comparison includes most known diversity generation procedures and three new deterministic proce-
dures introduced here. These deterministic procedures outperform existing deterministic method, but
are still outperformed by random procedures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A supervised classifier predicts the class of a query object based
on a model built using a training sample. Although an accurate pre-
diction is an important component of the classifier quality, the lack
of comprehensibility of classification results may cause a reluc-
tance to use certain classifiers. For example, when credit has been
denied to a customer, the Equal Credit Opportunity Act of the US
requires the financial institution to provide the reasons for reject-
ing the application; indefinite or vague reasons for denial are ille-
gal (Martens, Baesens, Gestel, & Vanthienen, 2007).

A pattern is an expression defined in some language that
describe some properties of a collection of objects. An important
characteristic of a pattern is its support, defined as the ratio of
objects described by the pattern with respect to the whole object
collection. To differentiate between useful and random patterns,
a minimal support threshold (l) is frequently used. If the support
of a given pattern is below l, the pattern is discarded as useless. A
pattern that appears significantly more in a group or class than in
the remaining groups or classes, capturing existing contrasts, is
named contrast pattern. Most understandable classifiers are based
on contrast patterns (Dong, 2012). Contrast patterns contained in

a query object can be used to find its class, and also provides an
explanation of the classification in terms that are easy to under-
stand in the user language. Examples of contrast pattern based
classifiers are emerging patterns, decision trees, and rules.

Contrast patterns can be mined from a set of decision
trees (Boulesteix, Tutz, & Strimmer, 2003; García-Borroto,
Martínez-Trinidad, Carrasco-Ochoa, Medina-Pérez, &
Ruiz-Shulcloper, 2010; Quinlan, 1987). Extracting patterns from
the tree can be better than directly generating the patterns (like rule
miners or emerging pattern miners (Novak, Lavra, Webb, Lavrac, &
Webb, 2009)) for two reasons (Quinlan, 1987). First, the local
discretization performed by decision tree miners with numeric fea-
tures avoids doing an a priori global discretization, which might
cause information loss. Second, even longer paths of decision trees
contain small proportion of candidate attributes, which reduces
significantly the search space of potential patterns.

The extraction of contrast patterns from a set of decision trees has
some advantages over keeping the trees, because there is no obvious
way to integrate trees into more complex structures that are more
accurate than their components (Quinlan, 1987). Additionally,
keeping all independent classifiers requires a significantly larger
amount of memory (Lin et al., 2014). On the other hand, creating
the collection of extracted patterns from all the trees, reducing it
through a filtering procedure, and obtaining an accurate model, is
a simple procedure (García-Borroto et al., 2010). Additionally, it is
usually simpler to understand classification results using the
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reduced collection of matched patterns than to understand the col-
lective vote of individual trees.

Diversity is the most important property of classifier ensembles,
based on the rationale that a collection of nearly identical classi-
fiers cannot outperform any of their components (Didaci, Fumera,
& Roli, 2013). There are different concepts of diversity, each one
reflecting intuitive notions, and so there are many ways to measure
it. However, diversity has not being fully understood yet (Wang &
Yao, 2013). Most measures of classifier diversity are based on esti-
mating the independence of the errors performed by the compo-
nents of the ensemble (Lysiak, Kurzynski, & Woloszynski, 2014).
In order to outperform a single decision tree, extracting contrast
patterns from a collection of decision tree is meaningful only if
the tree collection is diverse (García-Borroto et al., 2010).
Nevertheless, using diversity measures based on the classification
output for a task where decision trees are discarded and only some
patterns per tree are selected can be meaningless.

Some interesting questions arise here: What is the best method
for generating diversity, in order to extract more and better con-
trast patterns? How can we measure the tree diversity considering
that the trees are discarded and only some of their contained pat-
terns are interesting? Which method is more efficient for mining
patterns, in order to reduce the number of induced trees? What
strategy is better for generating diversity in the trees for mining
patterns among selecting features, selecting objects, or selecting
splits? This paper presents answers to these question, comparing
existing and newly introduced diversity generation procedures
for mining contrast patterns. It proposes to evaluate diversity by
the amount of total, unique, and minimal patterns extracted from
the collection of decision trees using different minimal support
thresholds. This evaluation allows a deeper understanding about
the characteristics of the resultant set of patterns mined per
method. As a result, the paper presents some ideas about the
behavior of different strategies for generating diversity.

Most methods for generating diversity in decision trees are
based on random samplings of features and/or instances. In this
paper, three new deterministic methods for generating tree diver-
sity are introduced. Deterministic methods are interesting because
many subsets selected by random procedures might contain few, if
any, informative features (Ye, Wu, Huang, Ng, & Li, 2013). In gener-
al, random procedures does not guarantee that the randomly
selected features have the necessary discriminant information
(Harandi, Ahmadabadi, Araabi, Bigdeli, & Lovell, 2010;
García-Pedrajas & Ortiz-Boyer, 2008).

Summarizing, this paper presents the following results. First, it
compares a representative collection of methods for generating
tree diversity, comparing their results based on diversity and accu-
racy. The paper suggest the bests methods according to database
characteristics. These results can guide the development of future
mining methods, both random and deterministic. Second, it intro-
duces a new method for measuring diversity for the task of using
decision trees to extract contrast patterns. Third, the paper intro-
duces three new deterministic methods for generating diversity.
Although these methods outperform the existing method
LCMine, they are outperformed by some random methods.
Finally, up to our knowledge, this is the first paper to study the
influence of the feature type in the behavior of each diversity gen-
eration procedure. This result can help future researchers to
improve actual procedures by using feature type information.

The paper consists of five sections. Section 2 contains materials
and methods used throughout the paper. A revision of the theory
and state of the art regarding diversity appears in Section 2.1.
Section 4 presents the main results of the paper and a detailed dis-
cussion. Conclusions and future work are presented in Section 5.

2. Material and methods

In this section, materials and methods are presented. Contents
in this section allow readers to evaluate the work performed and
provide sufficient details to allow the work to be reproduced. It
contains two subsections. Section 2.1 introduces the existing diver-
sity generation procedures while Section 2.2 provides details about
the experiments performed, algorithms, and methods for analyzing
their results.

2.1. Diversity generation procedures

In this section, the diversity generation procedures analyzed in
this paper are presented. Although most of them are components
of a more complex method, other components are disregarded.
Nevertheless, the same name of the ensemble method is kept.

Bagging (Breiman, 1996) creates diversity by training each clas-
sifier with a bootstrap replicate of the training set. Bootstrap repli-
cates are built by randomly sampling the training set, with
replacement, until an equal number of instances than the training
set is obtained. As decision trees are unstable classifiers (i.e., small
changes in the training sample lead to significantly changes in the
model), Bagging can be used with decision trees.

Random Forest (Breiman, 2001) creates diversity by selecting a
Random Subset of attributes at each node in the decision tree. The
best feature of the selected subset is then used to build the node.
Although in the original paper each forest is built based on an
bagged version of the training set, this process is not considered
in this paper to avoid hidden dependencies in the result. The fea-
ture subset is taken with size log2jFeaturesj, which is frequently
used (Breiman, 2001; Kocev, Vens, Struyf, & Deroski, 2013). Using
this reduced feature subset allows Random Forest to have less
computational cost and less correlation between generated trees
than other procedures (Xia, Du, He, & Chanussot, 2014). The suc-
cess of Random Forest can be also explained because injecting ran-
domness at the level of nodes tends to produce higher accuracy
models (Dollar & Zitnick, 2013).

Random Subspaces (Ho, 1998) selects a random feature subset
to build each decision tree. After testing different sizes of the sub-
set, jFeaturesj

2 returns the best results, and is selected for the experi-
ments. As Random Forest also uses feature subspaces, the name
Random Subset is used in the remaining sections.

Randomized C4.5 (Dietterich, 2000) randomly selects one of the
best 20 candidate splits at each node of the decision tree. Since
other methods also build randomized trees, the name Random
Split is used in this paper.

LCMine (García-Borroto et al., 2010) is the only existing method
for generating diversity that is deterministic. Diversity in LCMine is
generated using a set of vectors ranging from ~v ¼ ð1;1; . . . ;1Þ to
~v ¼ ðk1; k2; . . . ; kmÞ, each one of a different decision tree. For a given
vector, a tree is generated picking the best v l candidate split for
each node at level l. Usually, i < j) ki P kj, in order to allow high-
er diversity in upper nodes, where there is often a larger amount of
good splits, while reducing the diversity in lower nodes, where
there are usually fewer good splits. The vector ~v ¼ ðk1; k2; . . . ; kmÞ,
where m 2 f1; tree depthg, is known as the level-diversity vector.

As an example, consider the level-diversity vector ð5;4;3;2Þ.
LCMine generates 5 � 4 � 3 � 2 ¼ 120 decision trees, starting from
ð1;1;1;1Þ to ð5;4;3;2Þ. For example, the tree for vector ð2;1;3;2Þ is
built using the second best split for the root node, the best split for
nodes at the second level, the third best split for nodes at the third level,
and the second best split at the fourth level of the decision tree. Any
level deeper than the fourth level (m) uses the best candidate split.
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