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a b s t r a c t

This paper presents a new clustering algorithm that detects clusters by learning data distribution of each
cluster. Different from most existing clustering techniques, the proposed method is able to generate a
dynamic two-dimensional topological graph which is used to explore both partitional information and
detailed data relationship in each cluster. In addition, the proposed method is also able to work incre-
mentally and detect arbitrary-shaped clusters without requiring the number of clusters as a prerequisite.
The experimental data sets including five artificial data sets with various data distributions and an origi-
nal hand-gesture data set are used to evaluate the proposed method. The comparable experimental
results demonstrate the superior performance of the proposed algorithm in learning robustness,
efficiency, working with outliers, and visualizing data relationships.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a fundamental and important technique for data
analysis, which has been applied in variety of circumstances, such
as data mining, pattern recognition and image segmentation.
During the past decades, many clustering algorithms have been
proposed, which have been successfully applied as solutions for
different kinds of clustering or classification problems. However,
sometimes, given a completely unknown data set, we have to face
the following problems or challenges (Du, 2010; Jain, Murty, &
Flynn, 1999; Rui & Donald, 2005).

1. How many clusters (Jain & Dubes, 1988)? The biggest problem
with many classical clustering algorithms is that they require
the number of clusters, k, as an input parameter (Jain, 2010).
In this case, users have to own expertise and select an accurate
number for the value of k. Although there are some estimation
methods for determining k. it is very common that the value of
k cannot be exactly predicted, which often directly causes a low
quality of data analysis.

2. How to discover clusters with arbitrary shapes (Rui & Donald,
2005)? With most clustering algorithms, the shape of the
detected clusters are limited to convex shapes, e.g. spheres,
polygons, etc. But a cluster, especially in a spatial data set,

may not have a convex shape, but may be represented in an
arbitrary shape (Su & Liu, 2005). Moreover, the shape of a clus-
ter might be more complicated in higher-dimensional space.

3. How to reduce negative effects caused by outliers (Rui &
Donald, 2005)? It is very common that a real world data set con-
tains outliers (Ester, Kriegel, Sander, & Xu, 1996). In general, it is
preferable that a clustering algorithm is less sensitive to the
outliers and has a capability of removing them.

4. How to analyze data relationship in detail (Jain et al., 1999; Rui
& Donald, 2005)? Most clustering algorithms show data
relationship only by categories, which means they do not pro-
vide any detailed information about clusters, i.e. the data
relationship inside a cluster. The techniques of data visualiza-
tion or dimensionality reduction can help us understand data
relationship in a lower-dimensional space, including the
detailed information about the data relationship in each cluster,
but they usually do not provide the information about cluster
categories.

5. How can a clustering algorithm classify data incrementally (Rui
& Donald, 2005)? Most clustering algorithms works with a
‘‘batch mode’’, which means that the entire data set is required
to provide before clustering. But, sometimes, it is very difficult
to meet this requirement, e.g., a the real time systems collects
data sequentially. In this case, working with an ‘‘incremental’’
(non-batch) mode has much benefits.

For each of the problems or challenges mentioned above, there
are already many specific solutions. Unfortunately, to the authors’
knowledge, there is no solution to meet the combination of all
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these requirements, which means that it will be a difficult task to
choose a suitable clustering algorithm, if an unknown data set is
given. The purpose of this paper is to propose a novel technique
called growing incremental self-organizing neural network
(GISONN) to offer such a solution. GISONN considers clustering
as a incremental learning task of the data distribution of each clus-
ter. Meanwhile, GISONN automatically maintains a two-dimen-
sional topological graph which is used to represent the
information about both cluster categories and the detailed
relationship inside a cluster. The main contributions of this method
are summarized as follows.

1. The algorithm does not require the number of clusters as an
input parameter.

2. The algorithm can discover clusters with arbitrary shapes.
3. The algorithm has a capability to remove outliers.
4. The algorithm can visualize data relationship in a two-dimen-

sional topological graph where data categories and the detailed
data relationship in each cluster can be clearly reported.

5. The algorithm can work incrementally.

The remaining parts of this paper are organized as follows. In
Section 2, we review the state of the art of clustering techniques.
In Section 3, the GISONN algorithm is proposed. In Section 4, the
experimental results are presented. Finally, we summarize the fea-
tures of GISONN and give conclusions in Section 5.

2. Related work

A rough but widely agreed frame is to classify existing cluster-
ing techniques into partitional clustering, hierarchical clustering or
density-based clustering (Rui & Donald, 2005).

Partitional clustering, in general, is a statistical way of cluster-
ing (Chiang, Tsai, & Yang, 2011; Moody & Darken, 1989; Ng &
Han, 2002). A classical technique in this category is the k-means
clustering algorithm (MacQueen, 1967). Given a data set and an
integer k as the number of expected clusters, the standard k-means
algorithm first initializes k centers. Next, it calculates k
corresponding clusters, then updates the center of each cluster
and reassign data to the cluster with the closest center. This pro-
cess is repeated until the Mean Squared Error (MSE) converges.
Since k-means is simple and efficient, it is still widely used even
though over 50 years have passed since it was first proposed
(Jain, 2010). Motivated by k-means, many improved algorithms
have been developed (Ghosh & Dubey, 2013; Celebi, Kingravi, &
Vela, 2013; Lin & Chen, 2005).

Hierarchical clustering algorithms, in general, organize data
with some specific hierarchical structures which are usually rea-
lized by a binary clustering tree or a dendrogram (Murtagh &
Contreras, 2012). Hierarchical clustering can be implemented by
an agglomerative method or a divisive method (Du, 2010). A clas-
sical agglomerative clustering algorithm is initialized with N clus-
ters, where N usually equals the number of data in the data set, n.
Based on a specific measure of similarity, such as calculating the
Euclidean distance or Manhattan Distance between two data, and
nested merge operations, new clusters will be formed. Similarly,
a classical divisive clustering algorithm goes in an opposite way.
The most well known hierarchical algorithms are single-linkage
and mean-linkage (Song, Jin, & Shen, 2011; Theodoridis &
Koutroumbas, 2009). CURE is an improved single-linkage algo-
rithm, which can form clusters with arbitrary shapes (Guha,
Rastogi, & Shim, 1998). However, most typical hierarchical algo-
rithm requires an Oðn2 log nÞ complexity, which is a significant cost
for a large data set (Rui & Donald, 2005). The approach
(Bouguettaya, Yu, Liu, Zhou, & Song, 2015) first finds a group of

‘‘centroids’’ which represent similar data points in the dataset, then
it builds a hierarchy based on ‘‘centroids’’ instead of the original
data, so that the actual computational cost can be reduced.

Some hybrid algorithms which combine the advantages of par-
titional and hierarchical clustering have been developed.
CHAMELEON (Karypis, Han, & Kumar, 1999), clusters a data set
by considering both interconnectivity (the number of links
between tow clusters) and closeness (the length of those links) in
identifying the most similar pair of clusters, which makes
CHAMELEON powerful in discovering clusters with arbitrary
shapes and different sizes. Another hybrid approach, CSM (Lin &
Chen, 2005), is a two-phases clustering algorithm which partitions
a data set into several small sub-clusters in the first phase, and
then merges these sub-clusters in the second phase based on a
similarity measure of the inter-cluster distances in a hierarchical
manner. Recently, P.Y. Mok et al. introduced a method which first
obtains many clustering results from a partitional clustering algo-
rithm, and integrates these different results as a judgement matrix.
Then the algorithm find the final result with an iterative graph-
partitioning process (Mok, Huang, Kwok, & Au, 2012).

Density-based clustering algorithm typically work with several
concepts, e.g., e-neighborhood; pcore-point; directly density-
reachable; density-reachable and density-connected (Kriegel, Kröger,
Sander, & Zimek, 2011). DBSCAN (Ester et al., 1996) is the first
implementation of such concepts. It is insensitive to noisy data,
and able to discover arbitrary-shaped clusters. However, the main
difficulties of using DBSCAN are the detection of clusters with dif-
ferent densities and parameter determination (Cassisi, Ferro,
Giugno, Pigola, & Pulvirenti, 2013). The OPTICS (Ankerst, Breunig,
Kriegel, & Sander, 1999) builds an augmented ordering of data so
that it is able to deal with clusters of different densities.
However, the performance of OPTICS is generally 1.6 time slower
than DBSCAN (Berkhin, 2006). Based on different concepts and
techniques on density, many density-based clustering algorithms
have been developed in the literature, as found in Hinneburg and
Gabriel (2007), Ren, Liu, and Liu (2012) and Huang, Sun, Song,
Deng, and Han (2013).

Out of this frame, another important technique for clustering is
the self-organizing neural networks. One of the most well-known
techniques is the self-organizing map (SOM) (Kohonen, 1982), also
known as the Kohonen network. The standard SOM has two layers:
input layer and competitive layer. Competitive layer consists of a
set of units (also called neurons or nodes) with lateral connections,
which is usually constructed as a two-dimensional topological
structure. A weight vector is assigned to each unit and is updated
during training procedures according to the simple competitive
learning (SCL) (Kohonen, 2001) strategy. When the training proce-
dure is finished, SOM divides the input space into several regions,
i.e., Voronoi regions, and each best matching unit (BMU) is the site
of the corresponding Voronoi region. This indicates that SOM is
suitable for clustering tasks. Another powerful feature of SOM is
that high-dimensional data can be projected to a low-dimensional
topological structure, which means that SOM can be applied to
data visualization. Unfortunately, SOM has some drawbacks, one
of which is its fixed structure in its competitive layer. The size of
the network must be predefined and is unchangeable during train-
ing procedures, which is similar to providing an integer number k
as a parameter in the k-means clustering algorithm. In general, it is
difficult to determine k without any prior knowledge of the given
data set (Mangiameli, Chen, & West, 1996). In addition, the fixed
structure limits SOM to the detection of clusters which are pre-
sented as complex shapes.

With respect to this problem, a series of ‘‘growing-type’’ self-
organizing neural networks have been developed. These tech-
niques usually have dynamic network structures. Growing neural
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