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We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first recon-
structs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing
search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines
to learn the local structure around a target variable. We conduct two series of experimental comparisons
of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art
algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network
benchmarks with various data sizes to assess the quality of the learned structure returned by the
algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit
to new data and quality of the network structure with respect to the true dependence structure of the
data. Second, we investigate H2PC’s ability to solve the multi-label learning problem. We provide theo-
retical results to characterize and identify graphically the so-called minimal label powersets that appear
as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning
problem is then decomposed into a series of multi-class classification problems, where each multi-class
variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global
classification accuracy over ten multi-label data sets covering different application domains. Overall,
our experiments support the conclusions that local structural learning with H2PC in the form of local
neighborhood induction is a theoretically well-motivated and empirically effective learning framework
that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used
for the empirical tests are publicly available.
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1. Introduction

A Bayesian network (BN) is a probabilistic model formed by a
structure and parameters. The structure of a BN is a directed acy-
clic graph (DAG), whilst its parameters are conditional probability
distributions associated with the variables in the model. The prob-
lem of finding the DAG that encodes the conditional independen-
cies present in the data attracted a great deal of interest over the
last years (Gasse, Aussem, & Elghazel, 2012; Kojima, Perrier,
Imoto, & Miyano, 2010; Pefa, 2012; Perrier, Imoto, & Miyano,
2008; Rodrigues de Morais & Aussem, 2010a; Scutari, 2010;
Scutari & Brogini, 2012; Villanueva & Maciel, 2012). The inferred
DAG is very useful for many applications, including feature selec-
tion (Aliferis, Statnikov, Tsamardinos, Mani, & Koutsoukos, 2010;
Pefia, Nilsson, Bjorkegren, & Tegnér, 2007; Rodrigues de Morais &
Aussem, 2010b), causal relationships inference from observational
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data (Aliferis et al., 2010; Aussem, Rodrigues de Morais, & Corbex,
2012, 2010; Brown & Tsamardinos, 2008; Cawley, 2008; Ellis &
Wong, 2008; Prestat et al., 2013) and more recently multi-label
learning (Dembczyski, Waegeman, Cheng, & Hiillermeier, 2012;
Guo & Gu, 2011; Zhang & Zhang, 2010).

Ideally the DAG should coincide with the dependence structure
of the global distribution, or it should at least identify a distribu-
tion as close as possible to the correct one in the probability space.
This step, called structure learning, is similar in approaches and
terminology to model selection procedures for classical statistical
models. Basically, constraint-based (CB) learning methods system-
atically check the data for conditional independence relationships
and use them as constraints to construct a partially oriented graph
representative of a BN equivalence class, whilst search-and-score
(SS) methods make use of a goodness-of-fit score function for
evaluating graphical structures with regard to the data set. Hybrid
methods attempt to get the best of both worlds: they learn a
skeleton with a CB approach and constrain on the DAGs considered
during the SS phase.
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In this study, we present a novel hybrid algorithm for Bayesian
network structure learning, called H2PC." It first reconstructs the
skeleton of a Bayesian network and then performs a Bayesian-
scoring greedy hill-climbing search to orient the edges. The algo-
rithm is based on divide-and-conquer constraint-based subroutines
to learn the local structure around a target variable. HPC may be
thought of as a way to compensate for the large number of false neg-
atives at the output of the weak PC learner, by performing extra
computations. As this may arise at the expense of the number of
false positives, we control the expected proportion of false discover-
ies (i.e. false positive nodes) among all the discoveries made in PCy.
We use a modification of the Incremental association Markov bound-
ary algorithm (IAMB), initially developed by Tsamardinos et al. in
Tsamardinos, Aliferis, and Statnikov (2003) and later modified by
Pefia in Pefla (2008) to control the FDR of edges when learning
Bayesian network models. HPC scales to thousands of variables
and can deal with many fewer samples (n < q). To illustrate its per-
formance by means of empirical evidence, we conduct two series of
experimental comparisons of H2PC against Max-Min Hill-Climbing
(MMHC), which is currently the most powerful state-of-the-art algo-
rithm for BN structure learning (Tsamardinos, Brown, & Aliferis,
2006), using well-known BN benchmarks with various data sizes,
to assess the goodness of fit to new data as well as the quality of
the network structure with respect to the true dependence structure
of the data.

We then address a real application of H2PC where the true
dependence structure is unknown. More specifically, we investi-
gate H2PC's ability to encode the joint distribution of the label
set conditioned on the input features in the multi-label classifica-
tion (MLC) problem. Many challenging applications, such as photo
and video annotation and web page categorization, can benefit
from being formulated as MLC tasks with large number of catego-
ries (Dembczyski et al., 2012; Kocev, Vens, Struyf, & Dzeroski,
2007; Madjarov, Kocev, Gjorgjevikj, & Dzeroski, 2012; Read,
Pfahringer, Holmes, & Frank, 2009; Tsoumakas, Katakis, &
Vlahavas, 2010b). Recent research in MLC focuses on the exploita-
tion of the label conditional dependency in order to better predict
the label combination for each example. We show that local BN
structure discovery methods offer an elegant and powerful
approach to solve this problem. We establish two theorems
(Theorems 6 and 7) linking the concepts of marginal Markov
boundaries, joint Markov boundaries and so-called label powersets
under the faithfulness assumption. These Theorems offer a simple
guideline to characterize graphically: (i) the minimal label power-
set decomposition, (i.e. into minimal subsets Y;» CY such that
Yir I Y\ Yp|X), and (ii) the minimal subset of features, w.r.t an
Information Theory criterion, needed to predict each label
powerset, thereby reducing the input space and the computational
burden of the multi-label classification. To solve the MLC problem
with BNs, the DAG obtained from the data plays a pivotal role. So in
this second series of experiments, we assess the comparative abil-
ity of H2PC and MMHC to encode the label dependency structure
by means of an indirect goodness of fit indicator, namely the 0/1
loss function, which makes sense in the MLC context.

The rest of the paper is organized as follows: In the Section 2,
we review the theory of BN and discuss the main BN structure
learning strategies. We then present the H2PC algorithm in details
in Section 3. Section 4 evaluates our proposed method and shows
results for several tasks involving artificial data sampled from
known BNs. Then we report, in Section 5, on our experiments on
real-world data sets in a multi-label learning context so as to
provide empirical support for the proposed methodology. The

1 A first version of HP2C without FDR control has been discussed in a paper that
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main theoretical results appear formally as two theorems
(Theorems 6 and 7) in Section 5. Their proofs are established in
the Appendix. Finally, Section 6 raises several issues for future
work and we conclude in Section 7 with a summary of our
contribution.

2. Preliminaries

We define next some key concepts used along the paper and
state some results that will support our analysis. In this paper,
upper-case letters in italics denote random variables (e.g., X,Y)
and lower-case letters in italics denote their values (e.g., x,y).
Upper-case bold letters denote random variable sets (e.g., X,Y,Z)
and lower-case bold letters denote their values (e.g., X,y). We
denote by X | Y|Z the conditional independence between X and
Y given the set of variables Z. To keep the notation uncluttered,
we use p(y|x) to denote p(Y =y|X =X).

2.1. Bayesian networks

Formally, a BN is a tuple (G, P), where G = (U,E) is a directed
acyclic graph (DAG) with nodes representing the random variables
U and P a joint probability distribution in /. In addition, G and P
must satisfy the Markov condition: every variable, X € U, is inde-
pendent of any subset of its non-descendant variables conditioned
on the set of its parents, denoted by Paf. From the Markov condi-
tion, it is easy to prove (Neapolitan, 2004) that the joint probability
distribution P on the variables in U can be factored as follows:

n
s Xn) = [[PXi | Paf) 1)
i=1

Eq. (1) allows a parsimonious decomposition of the joint distri-
bution P. It enables us to reduce the problem of determining a huge
number of probability values to that of determining relatively few.

A BN structure G entails a set of conditional independence
assumptions. They can all be identified by the d-separation criterion
(Pearl, 1988). We use X1;Y|Z to denote the assertion that X is
d-separated from Y given Z in G. Formally, X 1;Y|Z is true when
for every undirected path in G between X and Y, there exists a node
W in the path such that either (1) W does not have two parents in
the path and W € Z, or (2) W has two parents in the path and nei-
ther W nor its descendants is in Z. If (G,P) is a BN, X1,Y|Z if
X15Y|Z. The converse does not necessarily hold. We say that
(G, P) satisfies the faithfulness condition if the d-separations in G
identify all and only the conditional independencies in P, i.e.,
XL1pY|Ziff X1GY|Z.

A Markov blanket My of T is any set of variables such that T is
conditionally independent of all the remaining variables given
M;. By extension, a Markov blanket of T in V guarantees that
My CV, and that T is conditionally independent of the remaining
variables in V, given My. A Markov boundary, MBr, of T is any
Markov blanket such that none of its proper subsets is a Markov
blanket of T.

We denote by PCY, the set of parents and children of T in G, and
by SPY, the set of spouses of T in G. The spouses of T are the variables
that have common children with T. These sets are unique for all g,
such that < G, P > satisfies the faithfulness condition and so we
will drop the superscript G. We denote by dSep(X), the set that
d-separates X from the (implicit) target T.

Theorem 1. Suppose < G,P > satisfies the faithfulness condition.

Then X and Y are not adjacent in G iff 3Z € U\ {X,Y} such that
X I Y|Z. Moreover, MBx = PCx U SPx.

A proof can be found for instance in Neapolitan (2004).
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