
Query join ordering optimization with evolutionary multi-agent systems

Frederico A.C.A. Gonçalves a,c, Frederico G. Guimarães a,⇑, Marcone J.F. Souza b

a Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
b Department of Computer Science, Federal University of Ouro Preto, Ouro Preto, Brazil
c IT Center, Federal University of Ouro Preto, Ouro Preto, Brazil

a r t i c l e i n f o

Article history:
Available online 17 May 2014

Keywords:
Join ordering problem
Query optimization
Multi-agent system
Evolutionary algorithm
Heuristics

a b s t r a c t

This work presents an evolutionary multi-agent system applied to the query optimization phase of Rela-
tional Database Management Systems (RDBMS) in a non-distributed environment. The query optimiza-
tion phase deals with a known problem called query join ordering, which has a direct impact on the
performance of such systems. The proposed optimizer was programmed in the optimization core of
the H2 Database Engine. The experimental section was designed according to a factorial design of fixed
effects and the analysis based on the Permutations Test for an Analysis of Variance Design. The evaluation
methodology is based on synthetic benchmarks and the tests are divided into three different experi-
ments: calibration of the algorithm, validation with an exhaustive method and a general comparison with
different database systems, namely Apache Derby, HSQLDB and PostgreSQL. The results show that the
proposed evolutionary multi-agent system was able to generate solutions associated with lower cost
plans and faster execution times in the majority of the cases.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Database Management Systems (DBMS) are very complex soft-
ware systems designed to define, manipulate, retrieve and manage
data stored in a database. DBMS have an essential role in the infor-
mation based society and represent critical components of busi-
ness organization. Relational Database Management Systems
(RDBMS) are those based on the relational model, which is the
focus of this work. The information recovery depends on a data-
base query and, as in Fig. 1, this query can be formed by many rela-
tions, which can be filtered and/or connected by different
relational operators (Garcia-Molina, Ullman, & Widom, 2008) such
as: selection (rhconditioni), projection (phattributesi), intersection (

T
),

union (
S

), set difference (n), join (fflhconditioni) and others.
When processing a query, many steps can be executed by the

RDBMS (Garcia-Molina et al., 2008; Elmasri & Navathe, 2010) until
the delivery of a result: (i) scanning/parsing/validation, (ii) query
optimization, (iii) query execution and (iv) result. The query opti-
mization step, focus of this work, has a very important optimiza-
tion task, which is ordering the relational operations of the
query. Specifically in the case of the join operations, the most
time-consuming operation in query processing (Elmasri &

Navathe, 2010), the optimization task can be viewed as a combina-
torial optimization problem commonly known as join ordering
problem. The problem has similarities to the Traveling Salesman
Problem (TSP) and according to Ibaraki and Kameda (1984), it
belongs to the NP-Complete class. It is worth noting that after
the optimization phase, the executor component receives a plan
with all the instructions to its execution. Execution plans with rela-
tions ordered and accessed in a way that can cause high I/O and
CPU cycles (high cost solutions) will impact directly in the query
response time and affect the entire system. Besides, some costly
plans can make the query execution impractical, because of their
high execution times. Therefore, the use of techniques capable of
finding good solutions in lower processing time is extremely
important in a RDBMS. For instance, in one case reported in our
experiments (Section 4) the proposed optimizer (Section 3.2) was
capable to find a solution with a lower estimated cost, which
allowed the plan to be executed almost 23% faster than the solu-
tion provided by the official optimizer used in H2 in the same
experiment.

In this paper we propose an approach to query optimization
that can be classified as a non-exhaustive one. We describe an
evolutionary multi-agent system (EMAS) (see Section 3.1) for join
ordering optimization running in the core of a real RDBMS named
H21 in a non-distributed environment. The main feature of the

http://dx.doi.org/10.1016/j.eswa.2014.05.005
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +55 (31) 3409 3419.
E-mail addresses: fred@nti.ufop.br (F.A.C.A. Gonçalves), fredericoguimaraes@

ufmg.br (F.G. Guimarães), marcone@iceb.ufop.br (M.J.F. Souza). 1 http://www.h2database.com/.

Expert Systems with Applications 41 (2014) 6934–6944

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.05.005&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.05.005
mailto:fred@nti.ufop.br
mailto:fredericoguimaraes@ufmg.br
mailto:fredericoguimaraes@ufmg.br
mailto:marcone@iceb.ufop.br
http://www.h2database.com/
http://dx.doi.org/10.1016/j.eswa.2014.05.005
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


algorithm is having a team of intelligent agents working together in
a cooperative or competitive way to achieve the solution of the prob-
lem. The agents of the system are able to interact and evolve in par-
allel. We extend initial ideas presented in Gonçalves, Guimarães, and
Souza (2013) by including the following contributions: improve-
ments in the algorithm operators; parallel implementation of the
local search heuristics; evaluation of the parameters of the algorithm
in the calibration phase; extended experiments with more realistic
data; and comparison of the proposed algorithm with the official
query planner in H2 and other DBMS, namely HSQLDB, Derby and
PostgreSQL.

We highlight as the main contribution of this paper, the devel-
opment of a technique not yet explored in the join ordering optimi-
zation field. Such method solves the join ordering problem in a
parallel way, and as will be reviewed in Section 2, most of the pro-
posed algorithms in the literature process the related problem
sequentially. Still regarding the proposed algorithm, a new cross-
over method can be highlighted. The experiment design is vali-
dated with a real Database Management System, and
consequently, a real cost model. Finally, we emphasize a more real-
istic evaluation methodology of the algorithms.

The paper is organized as follows. Section 2 discusses in more
detail the query optimization problem and some methodologies
applied to solve it. The proposed optimizer is detailed in Section
3. The evaluation methodology is introduced in Section 4. The com-
putational experiments and the conclusions/future work are pre-
sented in Sections 5 and 6, respectively.

2. Query optimization problem

The optimization problem of this work consists in defining the
best order of execution of the join operations among the relations
specified in the query to be processed. According to Ioannidis
(1996), the solution space can be divided into two modules: the
algebraic space and the space of structures and methods. The alge-
braic space is the focus of the discussion in this section, because
refers to the execution order of the relational operations consid-
ered. The space of structures and methods, on the other hand, is
related to the available methods for relational operators in the
RDBMS (more information about these methods can be found in
Garcia-Molina et al. (2008) and Elmasri & Navathe (2010)).

The final result of the optimizer is a plan with all the necessary
instructions to the query execution. Besides the operations order, a
query can be represented by many different shapes. Assume that,
for example, a join operator for 4 relations (multi-way join) is avail-
able and then a query with 4 relations could be expressed by only
one join operation. However, in practice, the join operation is bin-
ary (two-way join) because the combinations for multi-way joins
grow very rapidly (Elmasri & Navathe, 2010) and there are mature
and proven efficient implementations for binary join in the litera-
ture. A representation commonly used by RDBMS is called left-
deep-tree (see Fig. 2). This representation has only relations at
the leaves and the internal nodes are relational operations. Due
to this representation, the join operation is treated as binary (join

two tables only). Even with these restrictions, the number of pos-
sible solutions remains high – for a query with N þ 1 relations the

number of solutions is given by 2N
N

� �
N!. Further information

about the join ordering problem can be found in Ibaraki and
Kameda (1984), Swami and Gupta (1988), Ioannidis (1996) and
Steinbrunn, Moerkotte, and Kemper (1997).

It is worth noting that the cost of a solution is not given neces-
sarily by the actual cost of executing the query, but instead, can be
given by a cost function F that estimates the real cost of the solu-
tion. The cost estimation can use many metrics, for instance: I/O,
CPU and Network. The optimizer relies on the RDBMS for the task
of estimating the cost of the solution. Therefore, in the optimiza-
tion process, this function is abstracted and treated as a black
box, just receiving a candidate solution and returning its (esti-
mated) cost. Information about the cost model of relational opera-
tions are provided by Garcia-Molina et al. (2008) and Elmasri and
Navathe (2010).

Listing 1 presents a practical example with a query that returns
all marks from computer science students.

Two join operations can be extracted from the previous query:
J1 ¼ fstudent ffl marksg and J2 ¼ fstudent ffl deptg. Besides, two
valid solutions can be identified in this simple example:
S1 ¼ fJ1; J2g and S2 ¼ fJ2; J1g, one with a lower cost than the other.
In practice, the problem can have a huge combination of possible
solutions, preventing the use of exact methods or exhaustive
approaches. Nonetheless, non-exhaustive algorithms fit well in
these situations.

Given the complexity of the problem, several studies were pre-
sented for non-distributed environments along the years since the
early days of relational databases in the 1970s (Codd, 1970). The
seminal work is presented by Selinger, Astrahan, Chamberlin,
Lorie, and Price (1979), advancing an exhaustive method based
on dynamic programming (DP) with a time complexity OðN!Þ,
where N stands for the number of relations in the query. Ibaraki
and Kameda (1984) presented two algorithms, named A and B,
with a time complexity OðN3Þ and OðN2 log NÞ, respectively. An
extension of Algorithm B named KBZ algorithm with time complex-
ity OðN2Þ is presented by Krishnamurthy, Boral, and Zaniolo (1986).
A simulated annealing (SA) version for the current problem is
presented in Ioannidis and Wong (1987). Many methods are
compared in Swami and Gupta (1988): Perturbation Walk, Quasi-
random Sampling, Iterated Improvement (II), Sequence Heuristic
and SA. Additionally, in Swami and Gupta (1988), the authors
created a new evaluation methodology to check the heuristics,

Fig. 1. Example query.

Fig. 2. Left-deep tree.

Listing 1. Example – query SQL.

F.A.C.A. Gonçalves et al. / Expert Systems with Applications 41 (2014) 6934–6944 6935



Download English Version:

https://daneshyari.com/en/article/382825

Download Persian Version:

https://daneshyari.com/article/382825

Daneshyari.com

https://daneshyari.com/en/article/382825
https://daneshyari.com/article/382825
https://daneshyari.com

