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a b s t r a c t

Multivariate time series (MTS) data are widely used in a very broad range of fields, including medicine,
finance, multimedia and engineering. In this paper a new approach for MTS classification, using a para-
metric derivative dynamic time warping distance, is proposed. Our approach combines two distances: the
DTW distance between MTS and the DTW distance between derivatives of MTS. The new distance is used
in classification with the nearest neighbor rule. Experimental results performed on 18 data sets demon-
strate the effectiveness of the proposed approach for MTS classification.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, time series analysis has become one of the
most popular branches of statistics. Time series are currently ubiq-
uitous, and have come to be used in many fields of science. Data
sets in the form of time series occur in many areas of human life.
Recent developments in computing have provided the basic infra-
structure for fast access to vast amounts of online data. This is
especially true for the recording of time series data, for example
in the medical and financial sectors. One of the major applications
is time series classification. Multivariate time series (MTS) classifi-
cation is an important problem in time series data mining. MTS
classification is difficult for traditional machine learning algo-
rithms mainly because of the dozens of variables (if an MTS sample
is broken into univariate time series and each processed sepa-
rately, the correlations among the variables could be lost) and dif-
ferent lengths of MTS samples.

Several approaches have been proposed for MTS classification.
Maharaj (1999) used p-values and hierarchical clustering to clas-
sify stationary MTS. Geurts and Wehenkel (2005) classified subse-
quences instead of the whole MTS sample. Hayashi, Mizuhara, and
Suematsu (2005) proposed an approach involving embedding MTS
samples in a vector space and classifying them in the embedded
space. Kadous and Sammut (2005) proposed an approach to MTS
classification using metafeatures. Rodriguez, Alonso, and Maestro

(2005) proposed to select literals from MTS samples with boosting
and to use these literals with SVM. Yang et al. (2005) proposed a
new feature subset selection method for MTS classification, based
on common principal component analysis. Li, Khan, and
Prabhakaran (2006) and Li, Khan, and Prabhakaran (2007) pro-
posed two feature vector selection approaches for MTS classifica-
tion by using singular value decomposition. The first approach
considers only the first singular vector and the normalized singular
values, while the second takes into account the first two dominat-
ing singular vectors weighted by associated singular values.
Spiegel, Gaebler, Lommatzsch, De Luca, and Albayrak (2011) sepa-
rated a time series into segments using SVD and then clustered the
recognized segments into groups of similar context. Ghalwash,
Ramljak, and Obradović (2012) integrated the Hidden Markov
model and SVM classifier to make an early classification of MTS.
Ghalwash and Obradović (2012) proposed using time series
segments called shapelets in classification of MTS. Finally, Prieto,
Alonso-González, and Rodríguez (2014) proposed stacking for
multivariate time series classification.

However, these approaches do not consider explicitly the two-
dimensional nature of MTS samples (an MTS sample is in fact
one kind of two-dimensional matrix data). Weng and Shen
(2008a) proposed a new approach for MTS classification using
two-dimensional singular value decomposition, which is an exten-
sion of standard SVD. This method captures explicitly the two-
dimensional nature of objects. Weng and Shen (2008b) tried also
to use locality-preserving projections in the classification process
of MTS. Weng (2013) presented an extension of the previous
method which preserves the within-class local structure of the
MTS.
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This paper introduces a new shape-based similarity measure,
called parametric derivative dynamic time warping DDDTW, for
multivariate time series data. There have been many measures
proposed for univariate time series data, the most widely known
being the Euclidean distance. The main problem with this measure
is that the compared time series need to have the same length. A
newer measure, DISSIM (Frentzos, Gratsias, & Theodoridis, 2007),
provides a solution to this problem, but it is computationally costly
and in general does not compare favorably with elastic measures.
The family of elastic measures uses dynamic programming to align
sequences with different lengths, and includes DTW (Berndt &
Clifford, 1994), LCSS (Das, Gunopulos, & Mannila, 1997), edit dis-
tance with real penalty (ERP) (Chen & Ng, 2004), edit distance on
real sequence (EDR) (Chen, Øzsu, & Oria, 2005), derivative dynamic
time warping (DDTW) (Keogh & Pazzani, 2001), and angular metric
for shape similarity (AMSS) (Nakamura, Taki, Nomiya, Seki, &
Uehara, 2013). The sequence weighted alignment model (Swale)
(Morse & Patel, 2007) can be regarded as another elastic measure,
but without employing dynamic programming. A major difference
between DTW, LCSS, ERP, EDR on the one hand, and AMSS, DTW,
DDDTW on the other, is that those in the first group look only at
individual data points, without considering the shapes of trajecto-
ries. AMSS and LCSS are less affected by outliers, but AMSS is more
sensitive to short-term oscillations, which require preprocessing.
There have also been other measures proposed, such as TQuEST
(Aßfalg, Kriegel, Kunath, Pryakhin, & Renz, 2006) and SpADe
(Chen, Nascimento, Ooi, & Tung, 2007). SpADe is similar to AMSS,
DTW and our DDDTW in the sense that it looks at the shapes of data.
A critical difference, however, is that SpADe requires many param-
eters, which must be tuned for each data set, whereas AMSS and
DDTW have no parameter to tune, and our DDDTW has only one
parameter.

The simple method combining the nearest neighbor (1NN) clas-
sifier and some form of dynamic time warping (DTW) distance has
been shown to be one of the best-performing univariate time series
classification techniques (Ding, Trajcevski, Scheuermann, Wang, &
Keogh, 2008). The expansion of DTW to multiple dimensions is
only rarely found in the literature. There exist a few works which
describe extensions of the DTW algorithm to include multiple
dimensions. Gavrila and Davis (1995) described a type of multivar-
iate DTW, but used it only for the recognition of human movement.
An extension of DTW into two dimensions was proposed by
Vlachos, Hadjieleftheriou, Gunopulos, and Keogh (2003) and
Vlachos, Hadjieleftheriou, Gunopulos, and Keogh (2006), but not
systematically tested. An extension of the method of Vlachos
et al. (2003) was proposed by ten Holt, Reinders, and Hendriks
(2007). They also used derivatives, but calculated DTW separately
on feature derivatives and on feature values, and finally added
these values. In these works the term multidimensional refers to
the size of the feature vectors coming from the same modality.
Consequently, these approaches use the conventional two-
dimensional distance matrix, whose entries are calculated from
multidimensional feature vectors. Also Mello and Gondra (2008)
measured the similarity between two multidimensional (but not
multimodal) series. Wöllmer, Al-Hames, Eyben, Schuller, and
Rigoll (2009) introduced multidimensional dynamic time warping
for multimodal data streams (they assumed bimodal data streams).
Finally, Banko and Abonyi (2012) proposed algorithm called corre-
lation based dynamic time warping (CBDTW) which combines
DTW and PCA for highly correlated multivariate time series.

Our previous work (Górecki & Łuczak, 2013) contains the
results of research on DTW for univariate time series where the
derivative is added, and where parameterization involves both
function and derivative. As was shown, our method outperforms
classical DTW and DDTW. Because the addition of the first deriva-
tive gave such good results in the classification of univariate time

series, we decided to research further and to use our technique
to classify MTS. Our approach is therefore similar to the method
of Vlachos et al. (2003). In contrast to that algorithm, however,
we used the parametric approach, which allows us to choose the
impact of each distance on the final distance measure between
the MTS, and consequently on the quality of the classification.
The new distance functions so constructed are used in the nearest
neighbor classification method.

The main difference between the method proposed here and
other methods which use DTW and other distance measures is
the use of a combined approach. We use information from regular
DTW and from its derivative version DDTW in one parametric dis-
tance measure DDDTW. The parametric approach means that we can
choose the size of the contributions from component distance
measures for different data sets. Another advantage of our algo-
rithm is that the parameter is not located within the distance
DTW (as in some works by other authors), but outside that dis-
tance. This significantly reduces the computation time. An appro-
priate choice of the parameter in the new method means that
the error from both components of the distance on the test data
sets can be made even smaller. In spite of the need to tune a
parameter in the training phase, the computational complexity
does not depend on the number of parameters to search. However,
in the testing phase of classification the method preserves the
computational complexity of the component methods (DTW or
DDTW). For all these reasons in combination, our method appears
to be a universal method for the classification of MTS, able to iden-
tify for which data sets the impact of the derivative is helpful, and
to what extent. At the same time, the parametric approach in the
new method is a disadvantage as regards computation time. An
algorithm (cross-validation in this paper) is required to seek the
best value of the parameter on the training data, which unfortu-
nately increases the computation time in the learning phase. We
can, however, use the standard lower bound technique to reduce
the computation time for the nearest neighbor method. For the
DDDTW distance measure the lower bound is a combination of
lower bounds for the component distances (DTW and DDTW). It
is also possible to construct a special algorithm (described in this
paper) which accelerates the calculations on training data in the
learning phase.

The remainder of the paper is organized as follows. We first
(Section 2) review the concept of MTS and the dynamic time warp-
ing algorithm for MTS data. In the same section we introduce our
parametric distance based on derivatives, and explain the optimi-
zation process and properties of the new distance measure. In Sec-
tion 3 the MTS data sets used in the empirical comparison of
methods are described, and we explain the experimental setup.
Later in that section we present the results of our experiments
on the described MTS, as well as statistical analysis of the exam-
ined methods. We conclude in Section 4 with discussion of possible
future extensions of the work.

2. Methods

A (one-dimensional, univariate) time series is a sequence of
observations ordered in time (or space) (Box, Jenkins, & Reinsel,
2008), where time is the independent variable. For simplicity and
without any loss of generality, we assume that time is discrete.
Formally, a time series x is defined as a sequence of real numbers
in the form:

x ¼ fxðiÞ 2 R : i ¼ 1;2; . . . ;ng:

The number n of data points in a given time series is called its
length.

We define a multivariate (multi-dimensional) time series X as a
finite sequence of univariate time series:

2306 T. Górecki, M. Łuczak / Expert Systems with Applications 42 (2015) 2305–2312



Download English Version:

https://daneshyari.com/en/article/382830

Download Persian Version:

https://daneshyari.com/article/382830

Daneshyari.com

https://daneshyari.com/en/article/382830
https://daneshyari.com/article/382830
https://daneshyari.com

