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a b s t r a c t

When evolving from a normal state to failure, mechanical systems undergo a gradual degradation
process. Due to the nonlinearity of damage accumulation, degradation data always exhibit a distinctive
trend and random fluctuations. It makes the prediction of remaining useful life (RUL) very difficult and
inaccurate. The phase space trajectory reconstructed from the time series of degradation data is capable
of reliably elucidating the nonlinear degradation behavior. In this paper, a novel method based on the
similarity of the phase space trajectory is proposed for estimating the RUL of mechanical systems. First,
the reference degradation trajectories are built with historical degradation data using the phase space
reconstruction. Second, the similarities between the current degradation trajectory and the reference
degradation trajectories are measured with a normalized cross correlation indicator, which is determined
solely by the trajectory shape and is not interfered with the scaling and shifting of the trajectory. Trajec-
tory shape and degradation stage matching algorithms are combined to find the optimal segments in the
reference degradation trajectories compared with the current degradation trajectory. Finally, the RULs
corresponding to the optimal matching segments are subjected to weighted averaging to obtain the
RUL of the current degradation process. The proposed method is evaluated utilizing both simulated data
in stochastic degradation processes and experimental data measured on an actual pump. The results
show that the predicted RULs are very close to the actual RUL.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Following increasing demands in the field of operational safety,
asset availability and resource conservation, the area of prognos-
tics has emerged as one of the key foundations for the maintenance
scheme of modern industry. The main task of prognostics is to
estimate the remaining useful life (RUL) of a mechanical system,
which is defined as the period from the current service time until
the component or system fails. It is important to predict the RUL
of an asset as the incipient damage or performance degradation
occurs because it provides valuable information toward decreasing
future risk and loss due to failures or accidents. Over the past
decade, RUL prediction has become a research topic of high inter-
est, investigated in application fields (Heng, Zhang, Tan, & Mathew,
2009; Si, Wang, Hu, & Zhou, 2011; Sun, Zeng, Kang, & Pecht, 2012).

Most failures in mechanical systems result from gradual
degradation processes rather than sudden occurrences. Incipient
damage is formed under the effects of repeated load and adverse
conditions, such as wear and erosion, and then evolves into a
distinct failure. Numerous prognostic approaches have been devel-
oped to model the degradation processes of mechanical systems
and estimate the RUL. The physics-based and data-driven models
are representative prognostic approaches, which have a wide range
of applications.

Generally, physics-based models implement the mathematic
formulas deduced from the physics of failures to predict the theo-
retical damage evolution, such as crack propagation and spall
growth. Due to its convenience and accuracy, physics-based mod-
els are used as the basis of some expert systems for RUL prediction,
which can be found in references (Jin, Matthews, Fan, & Liu, 2013;
Kim, Song, & Park, 2009; Liu, Xuan, Si, & Tu, 2008; Zhao, Tian, &
Zeng, 2013). However, the damage that modeled by physics-based
models is specific and cannot be used for reference to other types
of mechanical components. Moreover, it is hard to construct an
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adequate physics-based model when the real-life system is
complex.

Data-driven models are the more available solutions in many
practical cases where degradation data are collected either contin-
uously or periodically from operating systems. This type of models
can be further classified as random coefficient models, artificial
intelligence approaches and trend-based approaches. In random
coefficient models, the degradation process is usually represented
as a linear, polynomial, exponential, or any other functional form
(Gebraeel, 2006). To characterize the complicated relationship
between the hidden degradation behavior and the observed fluctu-
ating data, stochastic processes, such as the Wiener process (Si,
Wang, Hu, & Zhou, 2013; Son, Fouladirad, Barros, Levrat, & Iung,
2013) and Gamma process (Guida & Pulcini, 2013), are used to fit
the distribution of the degradation path. For the random coefficient
models, it is necessary to acquire prior degradation knowledge and
abundant historical data to determine the model form and stochas-
tic parameters. Therefore, some improved strategies, such as
expectation maximization (Si et al., 2013) and Bayesian updating
(Gebraeel, Lawley, Li, & Ryan, 2005), have been utilized to reduce
the prediction errors caused by inappropriate parameters and to
enhance the generalization ability of the models. Artificial intelli-
gence is currently the most common foundational technique in
the prognostics literature due to its flexibility in generating appro-
priate model. Huang et al. (2007) developed a set of feed-forward
back propagation networks to model the exponential degradation
process and estimate the bearing life. Other types of neural net-
works, such as the cerebellar model articulation controller neural
networks (Lee & Kramer, 1993), recurrent neural networks (Tse &
Atherton, 1999) and self-organizing map neural networks (Niu &
Yang, 2010), have also been used to quantify the degradation level
and predict failure. In addition, some prognostics approaches are
developed based on artificial intelligence algorithms, such as sup-
port vector machine (Kim, Tan, Mathew, & Choi, 2012; Widodo &
Yang, 2011), relevance vector machine (Hu & Tse, 2013) and hid-
den Markov model (Peng & Dong, 2011). Because the degradation
characteristics are learned by hidden neural units or are mapped
into a high dimensionality space, artificial intelligence approaches
usually provide non-transparent solutions to failure prognosis, or
rather it cannot be observed that how predict results are inferred.
Trend-based approaches built degradation model utilizing the time
series of experience data acquired from long-term degradation
processes. The main difference with random coefficient models is
that the degradation path is not predefined but completely
determined by historical data. These approaches utilize advanced
statistical techniques, such as sequential Monte Carlo method
(Caesarendra, Niu, & Yang, 2010), state-space model (Sun, Zuo,
Wang, & Pecht, 2014) and Bayesian hierarchical model (Zaidan,
Harrison, Mills, & Fleming, 2015), to deal with the various degrada-
tion trends of mechanical systems, which work on variable operat-
ing conditions. For the above data-driven models, the bottleneck
problem is that their accuracy is highly dependent on the quantity
and quality of available degradation data.

Recently, condition monitoring is widely applied to detect the
degradation process of critical mechanical system. It provides a
favorable situation for data-driven models. However, due to the
nonlinearity of mechanical damage accumulation, unstable operat-
ing conditions and accidental disturbances can significantly alter
the associated degradation behavior. Therefore, the practical deg-
radation data, which represent the time series indicating system
performance, always exhibit a distinctive trend and random fluctu-
ations. In most data-driven models, the time series of degradation
data are directly engaged as the learning samples to model degra-
dation evolution. When the available samples are insufficient, the
distinctive trend and random fluctuations within the degradation
data may produce unacceptable errors.

Nonlinear degradation behavior is the major challenge con-
fronting the effective prediction of the RUL of mechanical systems.
From the viewpoint of dynamical systems, the time series of
degradation data are products of systems, which are undergoing
degradation progresses. Although the degradation data present
nonlinear behavior and possible chaos, the underlying data gener-
ating mechanisms can still be identified by phase space reconstruc-
tion technique. By virtue of the ability of revealing the nature of
system state, phase space reconstruction has become a powerful
tool for pattern recognition (Sharma & Pachori, 2015) and been
wildly applied to differentiate the failed state from the normal
state for mechanical systems (Aydin, Karakose, & Akin, 2014;
Wang, Li, & Luo, 2007). In phase space reconstruction, the time
series is rearranged into a phase space based on time delay embed-
ding. The evolving state of a system over time traces a path, which
is called the phase space trajectory, through the reconstructed
phase space. The shape of the trajectory represents the system
behavior that is compatible with a particular operating state.
Because degradation leads to changes in the dynamics that are
characteristic of the system state, the phase space trajectory is
capable of elucidating the latent degradation behavior from the
observed time series. In our research, the phase space trajectory,
rather than the original degradation data, is used to analyze the
degradation process.

In this article, we present a method for remaining useful life
estimation based on the similarity of the phase space trajectory.
The phase space reconstruction is adopted to build reference deg-
radation trajectories from the time series of historical degradation
data. The similarities between the current trajectory and the refer-
ence trajectories are robustly measured and used to estimate the
RUL. The reminder of the paper is organized as follows. Section 2
describes the main principle of our method, which includes the
phase space reconstruction (PSR) and normalized cross correlation
(NCC). The methodologies of RUL estimation are also given in this
section. Section 3 shows the results from the simulation verifica-
tion. Next, a case study demonstrating the application on an actual
pump is presented in Section 4. Finally, the conclusions are given in
Section 5.

2. Methods and principles

2.1. Phase space reconstruction

According to Takens’ theorem (Takens, 1981), the underlying
dynamics characteristic of a system can be obtained by recon-
structing the phase space, preserving the topological properties
of the original unknown attractor. To characterize the nonlinear
feature of a scalar time series, time delay embedding is commonly
used, allowing for the construction of a high-dimensional phase
space in which the time series are unfolded. Suppose a time series
is x = (x1, x2, . . ., xN); then, a point in the phase space is represented
as a row vector:

Xi ¼ ½xi�ðd�1Þs; xi�ðd�2Þs; . . . ; xi�s; xi�; ð1Þ

where N is the number of points in the time series, i is the index of
the row vector, ranging from 1 + (d � 1)s to N, d is the embedding
dimension, and s is the time delay. The sufficient condition for
the topological equivalent of the reconstructed phase space is that
d is greater than twice the box counting dimension of the original
system.

Because d is the most critical parameter for PSR, many have dis-
cussed how to determine the minimum embedding dimension
from a scalar time series. In this paper, we adopt Cao’s algorithm
(Cao, 1997), which is a practical and non-subjective method. Sup-
pose the embedding dimension is chosen as d; then, the ith point in
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