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a b s t r a c t

In this study, we address the regression problem on set-valued samples that appear in applications. To
solve this problem, we propose a support vector regression approach for set-valued samples that
generalizes the classical e-support vector regression. First, an initial representative point (or an element)
for every set-valued sample is selected, and a weighted distance between the initial representative point
and other points is determined. Second, based on the classification consistency principle, a search
algorithm to determine the best representative point for every set-valued datum is designed. Thus, the
set-valued samples are converted into numeric samples. Finally, a support vector regression that is based
on set-valued data is constructed, and the regression results of the set-valued samples can be approxi-
mated using the method used for the numeric samples. Furthermore, the feasibility and efficiency of
the proposed method is demonstrated using experiments with real-world examples concerning wind
speed prediction and the prediction of peak particle velocity.

� 2014 Published by Elsevier Ltd.

1. Introduction

Support vector machines (SVMs) were proposed by Drucker,
Burges, and Kaufman (1997) and Vapnik, Golowich, and Smola
(1997) in the 1990s. The SVM, including the support vector classi-
fication algorithm (SVC) and support vector regression algorithm
(SVR), was one of the first statistical learning algorithms to use
the kernel function theory in the field of machine learning. The
SVM is specifically tailored to the small sample case by solving a
convex quadratic optimization problem to obtain a globally opti-
mal solution with existing information. In this process, the SVM
solves the local minimization problem a neural network algorithm
cannot avoid. The SVM uses the kernel function as a nonlinear
transformation to enable samples to be mapped to a high-
dimensional feature space. In this manner, we can solve the
original problem in the high-dimensional space. SVM solves the
problem of a high-dimensional disaster successfully. Currently,
support vector machines are the subject of extensive attention
and are attracting a growing number of researchers studying them
from different viewpoints (Chapelle, Sindhwani, & Keerthi, 2008;
Deng & Tian, 2009; Ha, Wang, & Zhang, 2010; Ji, Pang, & Qiu,
2010; Karasuyama & Takeuchi, 2010; Kavousi-Fard, Samet, &

Marzbani, 2014; Li & Fang, 2004; Narwaria & Lin, 2010; Tsang,
Zhang, & Chawla, 2009;Yang & Liu, 2007).

By considering the insensitive loss function e introduced by
Vapnik, the support vector classification algorithm is extended to
the support vector regression algorithm. The support vector
regression algorithm obtains a linear regression function in high-
dimensional feature space. One obvious drawback of standard
SVR is that the prior knowledge of specific issues cannot be incorpo-
rated into the learning process. Considering that prior knowledge is
useful to the performance of the algorithm, Chuang (2007) pro-
posed a fuzzy weighted SVR with a fuzzy partition to address the
problem of boundary effects. Li, Mersereau, and Simske (2007)
introduced a new algorithm for the restoration of a noisy blurred
image based on support vector regression applied to blind image
deconvolution. Lauer and Bloch (2008) explored the addition of
constraints to the linear programming formulation of the support
vector regression problem for the incorporation of prior knowledge,
and they proposed a new method for the simultaneous approxima-
tion of multiple outputs linked by prior knowledge. Juang and
Cheng (2009) proposed the Takagi–Sugeno fuzzy system-based
support vector regression (TSFS-SVR), which is motivated by the
TS-type fuzzy rules and fuzzy clustering. The capabilities of TSFS-
SVR were demonstrated by conducting simulations in clean and
noisy function approximations and signal prediction. Farooq,
Guergachi, and Krishnan (2010) presented a novel prior knowl-
edge-based Green’s kernel for support vector regression after
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reviewing the correspondence between support vector kernels that
are used in support vector machines and regularization operators
that are used in regularization networks. Seo, Yim, and Kim
(2011) investigated empirical modeling of the superconductor-trig-
gered type fault current limiter (STFCL) using principal component-
based and fuzzy support vector regression for the prediction and
detection of faults in the STFCL. Yeh, Huang, and Lee (2011) devel-
oped a two-stage multiple-kernel learning algorithm by incorporat-
ing sequential minimal optimization and the gradient projection
method to address the problem of manually tuning the hyper
parameters of the kernel functions in stock market forecasting
problems. Liu and Xue (2012) designed a class of kernels by linearly
combining the kernels that correspond to each rule via fuzzy entro-
pies for all the fuzzy rules and constructed a new support vector
regression based on fuzzy a priori information. Additionally, there
are many research studies (Chen, He, & Wang, 2010; Chen, Bo, &
Liu, 2011; Chen, Xue, & Ha, 2014; Gordini, 2014; Ha, Wang, &
Chen, 2013; Harris, 2013; Kang & Cho, 2014; Li, Tax, & Duin,
2013; Manivannan, Aggarwal, & Devabhaktuni, 2012; Saito,
Rezende, & Falcao, 2014; Zhou & Chellappa, 2006) that focus on
improving the classical support vector machine and that incorpo-
rate a priori knowledge.

However, for all the above-described studies, the training set is
specified as

S ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞg; yi 2 R; i ¼ 1; . . . ; l;

where xi 2 Rn is a numeric vector. In applications, there are many
regression problems where the data are not numeric vectors but
set-valued samples, represented as

S ¼ fðA1; y1Þ; ðA2; y2Þ; . . . ; ðAl; ylÞg; yi 2 R;

or

S ¼ fðx1;A1Þ; ðx2;A2Þ; . . . ; ðxl;AlÞg; xi 2 R; i ¼ 1; . . . ; l; ð1Þ

where Ai � Rn is a set. For example, in a wind farm, wind speed is
monitored ten times vj (j = 1,2, . . . ,10) every ten minutes, and the
mean value v ¼

P10
j¼1v j is output as the monitored value every ten

minutes. The wind speed for the next ten minutes is predicted
according to the mean value, which is still a numerical number,
resulting in a much larger prediction error. Therefore, in order to
increase the prediction accuracy, the data used in prediction should
be all of the values vj(j = 1,2, . . . ,10) that can be described by a set
A = {v1,v2, . . . ,v10}, not the mean value v . Then, the problem of wind
speed prediction is based on the data set

S ¼ fðt1;A1Þ; ðt2;A2Þ; . . . ; ðtl;AlÞg; ti 2 ½0;þ1Þ; i ¼ 1; . . . ; l; ð2Þ

where Ai = {vi1,vi2, . . . ,vi10} are sets, not vectors. Thus, the problem is
regarded as a regression problem for set-valued samples, which
cannot be addressed by the classical SVRs (which are designed for
regression problems based on numerical numbers). Therefore, it is
necessary to focus on constructing the regression method for set-
valued samples.

In the prediction problem of wind speed, values vi of wind speed
every ten minutes are obtained from sets Ai (i = 1, . . . , l). In other
words, vi can be seen as the representative point (or element) of
the corresponding set Ai (i = 1, . . . , l). Inspired by this idea, and in
accordance with the classification consistency principle (i.e., the
number of misclassified points is controlled within the allowable
range as far as possible), we design an algorithm to search for
the best representative point (see the stars in Fig. 1) for every
set-valued sample (see the circles in Fig. 1). Then, the set-valued
training data are converted into the classical training data, and
we can use classical support vector regression to solve the regres-
sion problems of the set-valued data.

This paper is organized as follows. In Section 2, a weighted dis-
tance between the representative point and other points (or ele-

ments) is defined. In Section 3, an algorithm is designed to
search for the best representative point of every set-valued datum,
and the set-valued data are converted to classical data. In Section 4,
a set-valued samples based support vector regression (SSVR) is
constructed, which can give us the regression results of the set-val-
ued samples. In Section 5, experiments for set-valued data are pro-
vided to illustrate the proposed method, and the results show that
the proposed method is effective and feasible. In Section 6, we
draw conclusions.

2. Weighted distance between the representative point and the
other points

Here, it is noted that the importance of every component of
point x in set A is different from each other. For example, suppose
that x1 and x2 are two students; the four features are shown in
Table 1.

Therefore, the feature vectors of x1 and x2 are
Vx1 ¼ ð1;18;180;80Þ and Vx2 ¼ ð1;18;170;75Þ, respectively.
Because x1 and x2 have the same ‘‘Gender’’ and ‘‘Age’’, we cannot
identify them from the two features. In other words, ‘‘Gender’’
and ‘‘Age’’ do not have effect in the identification. Moreover,
because x1 and x2 have a ‘‘Body Height’’ of 180 and 170, respec-
tively, they can be identified from ‘‘Body Height’’ only. Therefore,
the four features play different roles in the identification of x1

and x2. For this reason, we introduce the concept of the index clas-
sification weight and weighted distance.

2.1. Definition of the index classification weight

Let l be the number of set-valued data, let {Aiji = 1,2, . . . , l} be the
collection of the set-valued data, let Ni be the number of elements x

in set Ai, and let N ¼
Pl

i¼1Ni.
Let mi (i = 1,2, . . . , l) be the (initial) representative point of set Ai

and j = 1,2, . . . ,n. Let us use the following notation

mi ¼ ðmi1;mi2; . . . ;minÞ ð3Þ

mj ¼
1
l

Xl

i¼1

mij ð4Þ

r2
j ¼

1
l

Xl

i¼1

ðmij �mjÞ2 ð5Þ

kj ¼ r2
j =
Xn

t¼1

r2
t ð6Þ

x

y

* *

*

O

Fig. 1. Set-valued data and their representative points.

Table 1
Four features of students x1 and x2.

Students Gender (male = 1,
female = 0)

Age (years) Body
Height (cm)

Body
Weight (kg)

x1 1 18 180 80
x2 1 18 170 75
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