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a b s t r a c t

Optimization of complex engineering systems is performed using computationally expensive high fidelity
computer simulations (e.g., finite element analysis). During optimization these high-fidelity simulations
are performed many times, so the computational cost becomes excessive. To alleviate the computational
burden, metamodels are used to mimic the behavior of these computationally expensive simulations. The
prediction capability of metamodeling can be improved by combining various types of models in the form
of a weighted average ensemble. The contribution of each models is usually determined such that the
root mean square cross validation error (RMSE-CV) is minimized in an aim to minimize the actual root
mean square error (RMSE). However, for some applications, other error metrics such as the maximum
absolute error (MAXE) may be the error metric of interest. It can be argued, intuitively, that when MAXE
is more important than RMSE, the weight factors in ensemble should be determined by minimizing the
maximum absolute cross validation error (MAXE-CV). Interestingly, it is found that the ensemble model
based on MAXE-CV minimization is less accurate than the ensemble model based on RMSE-CV minimi-
zation even if the MAXE is the metric of interest. The reason is found to be that MAXE-CV is mostly
related with the geography of the DOE rather than the prediction ability of metamodels.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization of complex engineering systems is performed
using computationally expensive high fidelity computer simula-
tions (e.g., finite element analysis). During optimization these
high-fidelity simulations are performed many times, so the com-
putational cost becomes excessive. To alleviate the computational
burden, metamodels are used to mimic the behavior of these com-
putationally expensive simulations.

There exists a vast of metamodeling methods developed in liter-
ature. The commonly used metamodel types include but not limited
to the polynomial response surface approximations, PRS (Box,
Hunter, & Hunter, 1978; Myers & Montgomery, 2002), Kriging, KR
(Sacks, Welch, Mitchell, & Wynn, 1989; Simpson, Mauery, Korte, &
Mistree, 2001), radial basis functions, RBF (Buhmann, 2003; Dyn,
Levin, & Rippa, 1986), Gaussian process, GP (MacKay, 1998;
Rasmussen & Williams, 2006), neural networks (Bishop, 1995;
Smith, 1993), and support vector regression, SVR (Clarke,
Griebsch, & Simpson, 2005; Gunn, 1997). A good review of meta-
modeling methods can be found in Queipo et al. (2005), Wang and
Shan (2007) and Forrester and Keane (2009).

Even though most research on metamodels focus on determin-
ing the most accurate metamodel for the problem at hand, there
exist other studies that focus on merging multiple metamodels
into a weighted average ensemble model (Acar & Rais-Rohani,
2009; Acar, 2010; Goel, Haftka, Shyy, & Queipo, 2007; Hamza &
Saitou, 2012; Muller & Piche, 2011; Sanchez, Pintos, & Queipo,
2008; Zhou, Ma, Tub, & Feng, 2012). It is observed in these studies
that the generated ensemble model has a better prediction ability
than the individual metamodels that contribute to the ensemble.

The weight factors in an ensemble are chosen such that an error
metric is optimized. The error metric can be a local error metric
(Acar, 2010; Sanchez et al., 2008) or a global error metric (Acar &
Rais-Rohani, 2009; Goel et al., 2007; Hamza & Saitou, 2012;
Muller & Piche, 2011; Zhou et al., 2012). In this paper, we consider
global error metrics. The most popular error metric used for select-
ing the weight factors in an ensemble is the root mean square cross
validation error (RMSE-CV). Selecting the weight factors based on
RMSE-CV aims at constructing the ensemble such that the mean
square error over design space is minimized. However, for some
applications, other error metrics may be of interest. For instance,
in design of safety critical components, minimization of MAXE
may be more important than minimization of RMSE. For these
problems, the weight factor selection based on RMSE-CV minimi-
zation may not be appropriate and weight factor selection should
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be revised. The main objective of this paper is to explore the effects
of error metrics on weight factor selection in an ensemble of
metamodels.

The paper is organized as follows. The formulation for weighted
average ensemble along with determination of the contribution of
metamodels is explained in the next section. Section 3 presents the
error metrics considered in this study. The mathematical and engi-
neering example problems used in this study is presented in Sec-
tion 4. Details of ensemble model generation is provided in
Section 5. The results obtained from the example problems are dis-
cussed in Section 6. Finally, the paper culminates with a list of
important conclusions presented in Section 7.

2. Ensemble of metamodels

In metamodel based optimization studies, first many different
types of metamodels are constructed, and then the most accurate
metamodel is selected to be used further whereas the other con-
structed metamodels are discarded. There are two major drawbacks
of this practice. First, information obtained through building vari-
ous different metamodels is not fully acknowledged. Second, the
accuracies of the constructed metamodels depend on the current
training data set, and a different metamodel than the selected one
may become the most accurate with a new data set. These short-
comings can be addressed by using ensemble of metamodels.

Suppose that there exists a data set {x1, x2, . . ., xN} that consists
of N observations of a D-dimensional variable x, together with the
corresponding observations of the response of interest {y1, y2,
. . ., yN}. The predictions of the response corresponding to different
types of stand-alone metamodels can be combined in the form of
an ensemble method. The most commonly used ensemble method
is the weighted average ensemble, where various different meta-
models are combined as

ŷensðxÞ ¼
XNM

i¼1

wiŷiðxÞ ð1Þ

where ŷens is the response prediction obtained from the ensemble
model, NM is the number of different models in the ensemble, wi

is the contribution (or weight factor) of the ith model in the ensem-
ble and ŷi is the response prediction obtained from the ith model of
the ensemble. To have an unbiased response estimation, the follow-
ing equation must be satisfied by the weight factors:

XNM

i¼1

wi ¼ 1 ð2Þ

The weight factors, wi, for the metamodels are usually chosen such
that the root mean square cross validation error (RMSE-CV) is
minimized in an aim to minimize the actual root mean square error
(RMSE). However, for some applications, minimization of other

error metrics may be more important. In that case, one may intui-
tively argue that the cross validation versions of these metrics
should be minimized while selecting the weight factors. In this
paper, the validity of this argument is questioned.

3. Error metrics

Prediction accuracy of metamodels can be measured using differ-
ent metrics, and these metrics can be used for multiple purposes
including (i) assessing the goodness of the approximation to be used
for analysis and optimization studies, (ii) identifying the regions of
high uncertainty in design space and performing additional sampling
(adaptive sampling) at these regions, (iii) selecting the best meta-
model among alternative models, and (iv) determining the weight
factors of stand-alone metamodels in an ensemble of metamodels
(Acar & Rais-Rohani, 2009; Goel et al., 2007). The most commonly
used metrics are (i) root mean square error (RMSE), (ii) mean abso-
lute error (MAE), (iii) coefficient of multiple determination (R2), (iv)
maximum absolute error (MAXE). The relative, normalized or
adjusted versions of these metrics are also frequently used.

The most popular error metric is the RMSE, which measures the
square root of the average value of the squared deviations of the
predictions from the observed values. RMSE can be computed from

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnv
i¼1ðyi � ŷiÞ2

nv

s
ð3Þ

where nv is the number of out-of-sample validation points. In
design of safety critical components, MAXE may be more important.
MAXE measures the absolute value of the maximum deviation of
the predictions from the observed values. MAXE can be computed
from

MAXE ¼max
nv
jyi � ŷij ð4Þ

4. Example problems

Overall nine example problems are considered. The first seven
example problems are well-known mathematical benchmark
problems used in optimization studies. These are followed by
two structural mechanics problems.

4.1. Mathematical benchmark problems

4.1.1. Branin–Hoo function

yðx1;x2Þ¼ x2�
5:1x2

1

4p2 þ
5x1

p �6
� �2

þ10 1� 1
8p

� �
cosðx1Þþ10 ð5Þ

Nomenclature

C mean square error matrix
Ei root mean square cross validation error of the ith meta-

model
ENMAXE ensemble model obtained through MAXE-CV minimiza-

tion
ENRMSE ensemble model obtained through RMSE-CV minimiza-

tion
KR0, KR1 Kriging models obtained by using zeroth-order and

first-order trend models, respectively
MAXE maximum absolute error (computed at a large number

of test points)
MAXE-CV maximum absolute cross validation error

NM number of models of the ensemble
PRS2 polynomial response surface of the second-order
RBF radial basis functions
RMSE root mean square error (computed at a large number of

test points)
RMSE-CV root mean square cross validation error (computed at

training points)
wi contribution of the ith model in the ensemble
ŷens prediction of response obtained from the ensemble

model
ŷi prediction of response obtained from the ith model of

the ensemble
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