Expert Systems with Applications 42 (2015) 2722-2730

journal homepage: www.elsevier.com/locate/eswa

Contents lists available at ScienceDirect

Expert Systems with Applications

=

Expert
Systems

with
Applications
An International
Journal

‘g2
a0

Uninformed pathfinding: A new approach

@ CrossMark

Kai Li Lim **, Kah Phooi Seng”, Lee Seng Yeong?, Li-Minn Ang”, Sue Inn Ch'ng*®

2 Department of Computer Science & Networked System, Sunway University, Malaysia
b School of Engineering, Edith Cowan University, WA 6027, Australia

ARTICLE INFO ABSTRACT

Article history:
Available online 15 November 2014

Keywords:
Pathfinding
Uninformed search
Bidirectional search
Parallel search
Multi-goal search

This paper presents a new pathfinding algorithm called the boundary iterative-deepening depth-first
search (BIDDFS) algorithm. The BIDDFS compromises the increasing memory usage of the Dijkstra’s
algorithm, where the memory clears enables the BIDDFS to consume less memory than the Dijkstra’s
algorithm. The expansion redundancy of the iterative-deepening depth-first search (IDDFS) is also
compensated; it is faster than the IDDFS in all of the testing instances conducted. The BIDDFS is further
enhanced for bidirectional searching to allow expanding to fewer nodes and reducing pathfinding time.
The bidirectional BIDDFS and the parallel bidirectional BIDDFS are also proposed. The proposed BIDDFS is
further extended to the multi-goal BIDDFS, which is able to search for multiple goals present on the map

in a single search. Simulation examples and comparisons have revealed the good performance of the

proposed algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pathfinding is described as the process of calculating a path
between two points located on a map or environment. This process
is performed using pathfinding algorithms (Cai, Yan, & Tie-Song,
2011; Dijkstra, 1959; Hart, Nilsson, & Raphael, 1968; Korf, 1988;
Korf, 1985; Stentz, 1994; Wilt, Thayer, & Ruml, 2010). The calcu-
lated routes are normally optimized for shortest distance, fastest
traveling time, and/or lowest cost. The eventual goal of pathfinding
is to calculate a route from point to point.

Pathfinding algorithms consist of a search to calculate the cost
to the goal, expanding nodes, and to find the path from the goal
to start using the route of lowest cost. The search algorithms can
be informed or uninformed. Informed pathfinding involve the use
of a heuristic function to locate the goal during pathfinding, and
the direction of pathfinding is guided towards that location, mak-
ing informed searches typically faster than uninformed searches,
it is used in situations where the goal location is known.
Uninformed pathfinding does not use heuristics for pathfinding,
and are also known as blind searches, it typically search in all
directions, usually in a radial pattern originating from the starting
node, it is used in situations where the goal location is unknown.
Examples of uninformed pathfinding algorithms are the Dijkstra’s

* Corresponding author.
E-mail addresses: 12057642@sunway.edu.my, kaililim@theiet.org (K.L. Lim),
jasmine.seng@gmail.com (K.P. Seng), leesengy@sunway.edu.my (L.S. Yeong),
li-minn.ang@ecu.edu.au (L.-M. Ang), sueinnc@sunway.edu.my (S.I. Ch’ng).

http://dx.doi.org/10.1016/j.eswa.2014.10.046
0957-4174/© 2014 Elsevier Ltd. All rights reserved.

algorithm (Dijkstra, 1959) and the iterative-deepening depth-first
search (IDDFS) (Korf, 1985). Examples of informed pathfinding
algorithms includes the A* search (Hart et al., 1968) and the IDA*
search (Korf, 1985).

Dijkstra’s algorithm is an uninformed search algorithm pro-
posed by E.W. Dijkstra. This algorithm uses a cost calculation fea-
ture to guarantee the shortest path from pathfinding. This
algorithm is often redeveloped and improved upon its classical
model - this includes implementing the algorithm in road naviga-
tion (Yin & Wang, 2010) and improving the algorithm by its storage
structure and searching area (DongKai & Ping, 2010). This algo-
rithm suffers a drawback where an increasing size of map will
introduce an exponential increase in memory requirements. The
performance of this algorithm is often measured and compared
with other algorithms such as the breadth first search (BFS),
depth-first search (DFS) and the A* algorithm (Terzimehic,
Silajdzic, Vajnberger, Velagic, & Osmic, 2011). Adding to that, the
Dijkstra’s algorithm has also been tested for performance over dif-
ferent architectures of implementation - serial and parallel (Jasika
et al., 2012). This algorithm also assumes that the working envi-
ronment is static and not dynamic. Since every old node is not back
referred, a changing environment will render this algorithm
ineffective.

The iterative-deepening depth-first search (IDDFS) was derived
to solve the memory drawback of the Dijkstra’s algorithm. This
algorithm searches the map like the Dijkstra’s algorithm sans the
memory to record the location that it has expanded. The algorithm
to prevent over-searching the map uses a threshold. An iteration of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.10.046&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.10.046
mailto:12057642@sunway.edu.my
mailto:kaililim@theiet.org
mailto:jasmine.seng@gmail.com
mailto:leesengy@sunway.edu.my
mailto: li-minn.ang@ecu.edu.au
mailto:sueinnc@sunway.edu.my
http://dx.doi.org/10.1016/j.eswa.2014.10.046
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

K.L. Lim et al./Expert Systems with Applications 42 (2015) 2722-2730 2723

the IDDFS begins at the starting point; this introduces search
redundancy where the starting point is searched multiple times
before the goal is found. At its very basic implementation, the
IDDFS is widely demonstrated as a tree-searching algorithm
(Smit & Stroulia, 2011a, 2011b). Hence, rather than deriving its
methods from Dijkstra’s algorithm as did the IDA* from the A*,
the IDDFS was derived from the depth-first search (DFS) (Korf,
1985). For this implementation, the IDDFS was adapted for use
on a grid-based map. Still, as a tree-search algorithm, it was not
designed to return a solution route from the goal node back to
the starting node. To allow the shortest route to be calculated, a
cost variable has to be factored in, and this is borrowed from the
Dijkstra’s algorithm. Literatures employing the IDDFS usually do
so due to its lower memory requirements compared to the Dijk-
stra’s algorithm, which is usually used in video games (Maggiore
et al., 2013; Zhao, Schiffel, & Thielscher, 2009).

Recent literatures covering iterative-deepening searches often
continues to improve on the IDA*. For example, Mencia, Sierra, &
Varela (2013) described a search technique which combines the
IDA* with a partially informed depth-first search, resulting in faster
searches for small to medium instances. Burns & Ruml (2013) also
described an algorithm that improves on the IDA* that is able to
select the nodes to be expanded, capable of on-line training. Faster
iterative-deepening searching was also achieved by Sharon, Felner,
& Sturtevant (2014) with the proposal of the Exponential Deepen-
ing A* (EDA*) search, which introduces an exponentially increasing
threshold to decrease the number of iterations needed for path-
finding, resulting in faster pathfinding. On the other hand,
Valenzano, Arfaee, Thayer, Stern, & Sturtevant, (2013) published
a work on finding suboptimal bounds in heuristic search, noting
that most implementations including the IDA* are optimal. The
additive bounding technique that they proposed notes that it is
not feasible to find optimal solutions given practical runtime and
memory constrains, and aims to find a suboptimal tradeoff for that
solution. An in-depth analysis of the IDA* was recently published
by Lelis, Zilles, & Holte (2013), where they also proposed algo-
rithms to predict the number of nodes expanded by the IDA*
search. It is observable that most literature proposing new itera-
tive-deepening algorithms attempt to improve upon the IDA*,
which is an informed search algorithm. There is hence a lack of
proposal of algorithms to improve upon the uninformed IDDFS
algorithm, where the heuristic usage of informed search algo-
rithms often result in faster pathfinding from the reduced search
area. However, a similar need to improve the IDDFS for the same
reasons of the IDA* is present as there exist applications that ben-
efit from the implementation of uninformed search algorithms
over informed search algorithms. For example, the IDDFS was pro-
posed due to the Dijkstra’s algorithm exhibiting an exponential
memory requirement increase with map size. While the IDDFS
minimizes the memory footprint of the IDDFS by not storing data
regarding expanded nodes, it suffers a drawback whereby search-
ing becomes redundant whereby nodes are repeatedly re-
expanded at every new iteration. These problems motivated the
research here to develop a new approach on uninformed pathfind-
ing, addressing the search redundancy of the IDDFS while retaining
its lower memory footprint.

In this paper, the boundary iterative-deepening depth-first
search (BIDDFS) is proposed to compensate the memory require-
ments of the Dijkstra’s algorithm and the search redundancy of
the IDDFS. This algorithm utilizes the iterative-deepening feature
of the IDDFS to reduce the memory requirements for pathfinding
and the cost calculation feature of the Dijkstra’s algorithm to guar-
antee the shortest path. A portion of memory is allocated for the
algorithm to store the location of the boundary to minimize search
redundancy. This means that while the IDDFS perpetually repeats
its search from the starting point, the BIDDFS repeats its search

from the saved boundary locations. The BIDDFS exhibits faster sin-
gle-node expansion speed compared to the A* search, IDA* search
and fringe search (Bjornsson, Enzenberger, Holte, & Schaeffer,
2005), and it is faster than the IDDFS due to its minimized redun-
dancy. To allow faster searching, the BIDDFS was enhanced for
bidirectional searching. Bidirectional searching searches back and
forth between the starting and goal locations, and these two
searches meet at a distance in between and subsequently the route
is then plotted from the meeting location. This approach of search-
ing is able to reduce pathfinding times due to lesser number of
nodes searched. Furthermore, the bidirectional BIDDEFS is tested
with a parallel approach to search from both the starting and goal
locations simultaneously. The BIDDFS is also enhanced to search
for multiple goals on a map. A multi-goal BIDDFS is able to search
for all goals on a map in a single search, whereas single-goal algo-
rithms will need to repeat searching for different goal locations,
introducing search redundancy. This eventually allows the multi-
goal BIDDFS to save time and redundancy searching multiple goals.
The remainder paper is organized as follows: Section 2 proposes
the BIDDFS. Section 3 describes a bidirectional BIDDFS. Section 4
introduces a parallel bidirectional BIDDFS. Section 5 proposes a
multi-goal BIDDFS. Section 6 shows the experiments for the algo-
rithms. Section 7 discusses the possible applications for the algo-
rithms. Finally, the concluding remark is given in Section 8.

2. The proposed boundary iterative-deepening depth-first
search (BIDDFS)

This section presents BIDDFS, an uninformed boundary search
algorithm. The BIDDFS is a newly proposed algorithm aiming to
address the memory drawback of the conventional Dijkstra’s algo-
rithm (Dijkstra) and the searching redundancy of the IDDFS. Its
main concept utilizes a boundary search. The BIDDFS explores
the compromise between the IDDFS redundancy and the Dijkstra’s
algorithm'’s increasing memory requirements on larger maps.

A list is maintained in the memory to store information of the
boundary nodes. The expansion pattern for this algorithm with
IDDFS and the Dijkstra’s algorithm is the same, so long as the
map and cost environment remains the same. Since this algorithm
is indirectly based off the Dijkstra’s algorithm, this algorithm, along
with all other algorithms discussed in this section should return the
same, shortest path back to the starting node from the goal node.

The BIDDFS also operates using a threshold to compensate for
the lack of memory, when a sub-runtime reaches its boundary, the
boundary nodes are saved into the memory and accessed when
the threshold increases and the search process restarts. To derive
the BIDDFS from the IDDFS, a variable is initialized as an array to
store the list of boundary node locations. This variable is written
at the end of every threshold where the algorithm is unable to
locate a goal; the nodes stored in this variable will be flagged as
the locations where pathfinding on a new threshold is started,
unlike the IDDFS that starts pathfinding at every threshold from
the IDDFS. When the memory is cleared at every threshold, the
variable’s contents are not cleared. Fig. 1. shows an example of
pathfinding using the BIDDFS. The algorithm does not re-expand
the starting node and the expanded node. Since memory is allo-
cated to store the boundary nodes, node expansions begins at
every threshold from the boundary node. The pseudocode in
Fig. 2 describes the BIDDFS algorithm.

Essentially, this algorithm follows the procedure below:

(1) Increasing threshold by 1
(a) Calculating the cost of surrounding nodes from the loca-
tion node.
(b) Update surrounding OPEN nodes’ cost.

Download English Version:

https://daneshyari.com/en/article/382867

Download Persian Version:

https://daneshyari.com/article/382867

Daneshyari.com

https://daneshyari.com/en/article/382867
https://daneshyari.com/article/382867
https://daneshyari.com

