
Research on a frequent maximal induced subtrees mining method based
on the compression tree sequence

Jing Wang, Zhaojun Liu, Wei Li, Xiongfei Li ⇑
College of Computer Science and Technology, Jilin University, China

a r t i c l e i n f o

Article history:
Available online 9 August 2014

Keywords:
Data mining
Frequent subtree
Induced subtree
Maximal subtree
Compression
CFMIS

a b s t r a c t

Most complex data structures can be represented by a tree or graph structure, but tree structure mining is
easier than graph structure mining. With the extensive application of semi-structured data, frequent tree
pattern mining has become a hot topic. This paper proposes a compression tree sequence (CTS) to con-
struct a compression tree model; and save the information of the original tree in the compression tree.
As any subsequence of the CTS corresponds to a subtree of the original tree, it is efficient for mining sub-
trees. Furthermore, this paper proposes a frequent maximal induced subtrees mining method based on
the compression tree sequence, CFMIS (compressed frequent maximal induced subtrees). The algorithm
is primarily performed via four stages: firstly, the original data set is constructed as a compression tree
model; then, a cut-edge reprocess is run for the edges in which the edge frequent is less than the thresh-
old; next, the tree is compressed after the cut-edge based on the different frequent edge degrees; and,
last, frequent subtree sets maximal processing is run such that, we can obtain the frequent maximal
induced subtree set of the original data set. For each iteration, compression can reduce the size of the data
set, thus, the traversal speed is faster than that of other algorithms. Experiments demonstrate that our
algorithm can mine more frequent maximal induced subtrees in less time.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structures of data are becoming increasingly complicated with
the fast development of the Internet and storage technology. Most
data with a complicated structure can be represented by a tree or
graph structure. With the extensive application of semi-structured
data, the research priority of frequent pattern mining has
expanded from frequent item set mining (Liu, Lin, & Han, 2011;
Wang & Chen, 2011; Yang & Huang, 2010) to frequent subtree min-
ing (Balcázar, Bifet, & Lozano, 2010; Li, Li, & Zhao, 2010) and fre-
quent subgraph mining (Hou, Ong, Nee, et al., 2011; Jiang,
Coenen, & Zito, 2013). The complexity of tree mining is lower than
that of graph mining, and tree mining algorithms can be applied to
graph mining instances that contains a small amount of rings, so it
is of great significance to be able to mine data represented by a tree
structure. Frequent subtree mining has become an important field
of data mining research.

Frequent subtree mining is the process of mining a subtree set
from a given data set that satisfies user attention (support or fre-
quent degree). Frequent subtree mining has a high value in com-
puter vision, text acquisition, Web log analysis, XML document

analysis, XML association rule mining, XML query pattern mining
territory, semi-structured data analysis, analysis of biometric
information and structural analysis of compounds. For example,
through application of the frequent subtree mining method to
web logs, users’ degree of interest can be known by deep analysis
of the information represented in a tree structure, and it is conve-
nient to optimize the structure of the network. In analyzing the
XML document, the frequent subtree mining method can find a fre-
quent data structure that is implicit and represented by a tree
structure.

When mining frequent subtrees on a given tree data set, the
number of frequent subtrees increases exponentially with the
decrease of the minimum degree, and the frequent subtrees in
the result data set contains redundant information, so simplifying
the result set is necessary. Finding the closed subtrees and the larg-
est subtrees are two common methods to simplify the result set.
Closed subtree T can express information that all other subtrees
closed by T can express, so subtrees closed by T can be deleted from
the result set. Recently, there has been great interest in mining
closed subtrees, and many efficient closed subtree mining algo-
rithms have been proposed. Maximal subtree T0 can express infor-
mation that all other subtrees maximized by T0 can express, so the
number of subtrees in the result set can be minimized. This is sig-
nificant for the growth of large-scale data.

http://dx.doi.org/10.1016/j.eswa.2014.07.053
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

Expert Systems with Applications 42 (2015) 94–100

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.07.053&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.07.053
http://dx.doi.org/10.1016/j.eswa.2014.07.053
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


In this paper, we propose an efficient method, CFMIS, based on
the compression tree sequence that focuses on mining frequent
maximal induced subtrees. The algorithm is primarily performed
via four stages: firstly, the original data set is constructed as a com-
pression tree model; then, a cut-edge reprocess is run for the edges
in which the edge frequent is less than the threshold; next, the tree
is compressed after the cut-edge based on the different frequent
edge degrees; and, last, frequent subtree sets maximal processing
is run such that, we can obtain the frequent maximal induced sub-
tree set of the original data set. We have demonstrated experiment
that the proposed algorithm in this paper can mine frequent max-
imal induced subtrees in a rapid and efficient way.

2. Related work

Methods for mining frequent subtrees are classified into mining
methods based on generation–test strategy and mining methods
based on pattern growth strategy. The main idea of mining method
based on generation–test strategy is to produce the corresponding
candidate subtree first, and then traverse the corresponding data
set to test whether the candidate subtree is frequent. This strategy
is mainly used to expand or merge subtrees to generate a new can-
didate subtree, and then to test whether the new candidate subtree
is frequent or not by traversing the database. Mining methods
based on pattern growth strategy iterate through the database to
find the frequent tree extension points through repeated search,
until mining out all hidden frequent subtrees.

EvoMiner (Deepak, Fernández-Baca, Tirthapura, et al., 2011)
is an Apriori-like level-wise method, which uses a novel
phylogeny-specific constant-time candidate generation scheme, a
fingerprinting based technique for downward closure, and a low-
est-common-ancestor-based support counting step. Bui, Hadzic,
and Tagarelli et al. introduce an associative classification method
(Bui, Hadzic, Tagarelli, et al., 2014) based on a structure preserving
flat representation of trees in which subtrees are constrained by
the position in the original trees, leading to a drastic reduction in
the number of rules generated, especially with data that has great
structural variation among tree instances. Nguyen, Doi, and
Yamamoto propose a new top-down method (Nguyen, Doi, &
Yamamoto, 2012) for mining unordered closed tree patterns from
a database of trees such that every mined pattern must contain a
common piece of information in the form of a tree specified by
the user. Lee and Lee introduce a new type of problem called the
frequent common family subtree mining problem (Lee & Lee,
2013) for a collection of leaf-labeled trees in their paper and pres-
ent some characteristics for the problem. It proposes an algorithm
to find frequent common families in trees. Nguyen and Yamamoto
propose a novel and efficient incremental mining algorithm (Ngu-
yen & Yamamoto, 2010) for closed frequent labeled ordered trees.
They adopt a divide-and-conquer strategy and apply different min-
ing techniques in different parts of the mining process. The algo-
rithm requires no additional scan of the entire database. PTG (Li
& Yang, 2011) (partition tree growth) is put forward based on
the partition principle. In the PTG algorithm, the database is
divided into several partitions, the TG (tree growth) algorithm cre-
ates the local frequent subtrees of every partition, and then creates
the global frequent subtrees according to the global support value
for filtering. Deng, Lv proposed Nodeset (Deng & Lv, 2014), a novel
structure where a node is encoded only by pre-order or post-order
code to solve the memory-consumption problem. Xiao and Yao
proposed the classic PathJoin (Xiao & Yao, 2003) algorithm based
on the Apriori algorithm to effectively implement mining of max-
imal frequent subtrees. The algorithm uses a compact data struc-
ture called FST-Forest, which compresses the trees and retains
the original tree structure. PathJoin generates candidate subtrees
by joining the frequent paths in FST-Forest.

MFPTM (Wu & Li, 2011) constructs an MP1 tree based on fusion
compression and the FP2 tree principle to mine maximal frequent
subtrees. MFPTM is an advanced algorithm as it solves the problem
of frequent pattern mining based on the Apriori algorithm which
generates a large quantity of candidate patterns and improves the
efficiency of mining frequent subtrees. MFPTM outperforms the clas-
sic algorithm PathJoin. The proposed algorithm, CFMIS, and the
state-of-the-art MFPTM both focus on frequent maximal subtrees,
not just frequent subtrees. Furthermore, the two algorithms both
retain subtrees that only contain frequent nodes by compression,
although the compression methods are different. Therefore, the
two algorithms are compared by experiments on both synthetic
and real datasets.

3. CFMIS algorithm

In this section, we provide the definitions for some general and
specific concepts that will be used in the remainder of the paper.
We also give the details of our algorithm.

3.1. Prepared knowledge

A tree is generally defined as an acyclic connected graph, and
they can be classified according to their structural characteristics.
If sibling nodes of tree T are ordered, the tree T is called an ordered
tree; otherwise, it is known as an unordered tree. If the nodes in
the tree contain labels, the tree T is called a label tree, otherwise,
it is known as a non-label tree. If the sibling nodes of the same par-
ent node have no repeats, the tree T is called an attribute tree,
otherwise, it is known as a non-attribute tree. An unordered label
attribute tree is denoted as ULAT,

Definition 1 (ULAT). An unordered tag attribute tree is an acyclic
connected graph, which is denoted as ULAT = (V, E, R, L, r), where V
is the node set; E is the edge set in which (x, y) 2 E represents that
node x is the parent of node y; R is the label set in which elements
can be compared and sorted; L is the mapping from the node set to
label set, L : V ! R, and sibling nodes of the same parent node
without the same label; and r is the root node.

The CFMIS algorithm addresses unordered label attribute tree
sets, and the ‘tree’ mentioned below is ULAT, assuming that there
is no repeat label in a same tree.

Definition 2 (Induced subtree). A tree T0 = (V0, E0, R0, L0, r0) is an
induced tree of T = (V, E, R, L, r), denoted as T0 � T, if and only if
V0 � V; E0 � E; R0 � R; L0 � L.

Fig. 1 shows an induced tree of a source tree.
Reserving parent–child relationships between nodes in the

source tree and the absence of affection among sibling nodes are
features of induced trees. The CFMIS algorithm addresses the
induced trees of an original data set.

Definition 3 (Frequent subtree). Let the tree structure data set be
D = {T1, T2, . . ., Tn}. e is the minimum frequency threshold, T0 � Ti,
where i 2 [1, n], Ti 2 D. Occ(T, T0) represents whether T0 occurs in T, if
T0 occurs in T, then Occ(T, T0) = 1, and else Occ(T, T0) = 0. The
frequency of T0 is denoted as Frq(T0), and FrqðT 0Þ ¼Pn

i¼1OccðT; T 0Þ: T 0 is a frequent tree if and only if Frq(T0) P e.

Definition 4 (Maximal subtree). Let the tree structure data set be

1 MP (maximal path) tree is proposed in reference Wu and Li (2011), each path
from the root node to a leaf node in an MP tree is frequent.

2 FP (frequent pattern) tree, constructs different branches of an FP tree by
traversing each item in the transaction dataset.

J. Wang et al. / Expert Systems with Applications 42 (2015) 94–100 95



Download English Version:

https://daneshyari.com/en/article/382919

Download Persian Version:

https://daneshyari.com/article/382919

Daneshyari.com

https://daneshyari.com/en/article/382919
https://daneshyari.com/article/382919
https://daneshyari.com

