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a b s t r a c t

Many businesses offer multiple products or services that are interdependent, in which the demand for
one is often affected by the prices of others. This article considers a revenue management problem of
multiple interdependent products, in which dynamically adjusted over a finite sales horizon to maximize
expected revenue, given an initial inventory for each product. The main contribution of this article is to
use reinforcement learning to model the optimal pricing of perishable interdependent products when
demand is stochastic and its functional form unknown. We show that reinforcement learning can be used
to price interdependent products. Moreover, we analyze the performance of the Q-learning with eligibil-
ity traces algorithm under different conditions. We illustrate our analysis with the pricing of services.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The history of the development of expert systems is a very
reach one, throughout the years several important applications
have been proposed in which there is an attempt to transfer exper-
tise form humans to computers by using artificial intelligence
methods, see Eom (1996) and Liao (2005) for a complete survey
in the area: expert systems have been applied in Accounting and
Finance, Human resource management, Marketing, Logistics, and
Manufacturing planning, among other areas. In the context of pric-
ing problems we find: customized pricing in which the producer
charges a different price to different consumers (e.g., Lee, Lee, &
Lee (2012)); automobile pricing using artificial neural networks
(Iseri & Karlik, 2009); pricing and promotion strategies for online
shopping (Chan, Cheng, & Hsien, 2011); smart metering (e.g.,
Chakraborty, Ito, & Senjyu (2014)); and pricing of mobile phones
(Sohn, Moon, & Seok, 2009), among others.

In this article we address the issue of dynamic pricing
interdependent products and services, which can be defined as
those whose demand is affected by the prices of other products
and services. The dynamic pricing of interdependent and perish-
able products or services requires a strategy that considers these
demand interdependencies. Indeed, the generic problem of pricing

perishable interdependent products or services arises in a variety of
industries, including fashion, or seasonal retail, and the travel and
leisure industries. For example, in the retail industry it may take
as long as six to eight months to produce an item which would typ-
ically be expected to be sold in as little as nine weeks (Gallego & van
Ryzin, 1994). In such a case, reordering stock is not possible and old
stock must be cleared before the arrival of new stock. Many retail
products influence demand for other products or services. For
example, changes in the price of a pair of jeans might affect the
demand for a matching belt or other related brand preferences.
Other examples include flights to the same destination at different
times of the day or week, the delivery of services at different times,
and various types of rooms in a hotel. Ignoring the effects of
demand substitution on inventory and pricing decisions can have
significant implications profit (Bitran, Caldentey, & Vial, 2004). This
interdependency is especially important as the need to understand
purchasing behavior of customers becomes increasingly complex
as the number of variables increases with interdependent products.

For simplicity, most studies in dynamic pricing of interdepen-
dent services or products assume that the functional relationship
between demand and price is known to the decision maker. For
example, Oliveira (2008) uses Lemke’s algorithm to analyze the
dynamic pricing of interdependent products both within a week
and for the management of the products’ life cycle. This author’s
assumption was that, indeed, the firm knows the demand
functions both in the short-term and in the long-term. Also,
Besbes and Zeevi (2009) show that for a single product dynamic
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pricing problem, the use of parametric approaches in nonparamet-
ric environments can result in significant revenue loss. The
assumption of full information, especially with multiple
interdependent products, makes the problem more tractable.
While allowing for the fast solution of complex problems
(Oliveira, 2008), this endows the decision maker with knowledge
that he or she does not possess in practice. These assumptions
regard not only the estimates for demand and cost parameters
but also the functional forms of the demand and cost functions.
These functional forms are very difficult to estimate and in most
cases are unknown.

The pricing of services and products is usually influenced by
many factors such as competitors prices of substitutable services
and stochastic demand, which makes it a complex large scale
stochastic problem. For this reason a simplified model is usually
analyzed, due to computational tractability, as the most complex
models are too difficult for managers to implement in real time,
because of the large number of calculations involved. A method
that allows the analysis of a complex problem, such as the pric-
ing of interdependent products, requires the ability to both
implicitly learn demand behavior and to optimize the pricing
policies of the different products. Reinforcement learning meets
these requirements (e.g., Sutton & Barto (1998), Kaelbling,
Littman, & Moore (1996), Mabu, Tjahjadi, & Hirasawa (2012),
Peteiro-Barral, Guijarro-Berdas, Prez-Snchez, & Fontenla-Romero
(2013), dos Santos, de Melo, Neto, & Aloise (2014), Oliveira
(2014)) as the optimal policy is implicitly without the knowl-
edge of the actual demand function of the transition probabili-
ties between states; moreover, as reinforcement learning is
based on using Monte-Carlo simulation it is able to handle very
large problems.

Reinforcement learning offers the advantage of formulation of a
mathematical model based on multiple variables without any pre-
definition of structure of the model, (Dorca, Lima, Fernandes, &
Lopes, 2013; Jiang & Sheng, 2009). Applications of reinforcement
learning in the context of expert systems include, among others,
goal-regulation in manufacturing systems (Shin, Ryu, & Jung,
2012), real time rescheduling (Palombarini & Martinez, 2012),
inventory control in supply chain management (Jiang & Sheng,
2009; Kwon, Kim, Jun, & Lee, 2008), and real-time dynamic packag-
ing for e-commerce (Cheng, 2009). Our research similarly advan-
tage of model-free approach offered by reinforcement learning
algorithm pricing of multiple interdependent products. The major
contribution of this article the use of the Q-learning with eligibility
traces algorithm to model the dynamic pricing of interdependent
services. The use of this algorithm allows the joint learning of
the pricing strategies for different services without explicitly mod-
eling consumer behavior. Using a model-free environment
(whereby the transition probabilities between states follow an
unknown distribution) enables many influencing factors to be
included implicitly in the pricing decisions.

The remainder of this paper is structured as follows. First, we
review relevant literature. Second, we discuss how the model is
formulated and analyze the dynamic pricing model with
interdependent products. Third, we evaluate the performance of
the interdependent learning algorithm, using simulation the
theorems proved in the article. Finally, we summarize our
conclusions.

2. Relevant literature

The two main areas of research that are most relevant to this
study are dynamic pricing and reinforcement learning. Dynamic
pricing of perishable assets has been researched extensively see,
for example, Gallego and van Ryzin (1994), McGill and van Ryzin

(1999), Anjos, Cheng, and Currie (2004), Anjos, Cheng, and Currie
(2005), Currie, Cheng, and Smith (2008) and Zhao and Zheng
(2000), who each address a single product problem. Reviews of
these articles can be found in Elmaghraby and Keskinocak
(2003), Bitran and Caldentey (2003) and Talluri and van Ryzin
(2005).

There is limited literature on the dynamic pricing of interdepen-
dent products or services. Gallego and van Ryzin (1997) consider
dynamic pricing problems where the demand for each product
depends on a vector of prices of all the products. They assume that
demand is Markovian for the current price and that the relation-
ship between all prices and arrival rates is known. Bitran et al.
(2004) combine the multinomial logit model with a utility maximi-
zation function to describe the demand for substitutable products.
These authors use heuristic algorithms to approximate an optimal
solution. Maglaras and Meissner (2006) show that when customers
choose between multiple products, the dynamic pricing problem
can be reduced to an equivalent one-dimensional problem. They
propose several heuristics to solve the optimization problem.
Cooper, Homem-de-Mello, and Kleywegt (2006) show that neglect-
ing substitution across products can lead to a downward spiral
effect, in which the performance of the capacity allocation policy
worsens systematically as the forecasting–optimization process
continues. Zhang and Cooper (2006) develop a Markov decision
process formulation of dynamic pricing for multiple substitutable
flights between the same origin and destination, taking into
account customer choice among flights. Netessine, Savin, and
Xiao (2006) consider cross-selling by offering customers a choice
between their requested product and a package containing multi-
ple products which include the requested one. They recognize the
complexity of this problem and demonstrate that, in a setting
where the number of products is three or more, the choice of the
best packaging complements is non-trivial. Oliveira (2008) uses
Lemke’s algorithm to analyze dynamic pricing issues in the daily
and life-cycle dynamic pricing of services. Asdemir, Jacob, and
Krishnan (2009) investigate optimal dynamic pricing of multiple
home delivery options using dynamic programming. Their analysis
shows that substitution effects are significant on an optimal pric-
ing policy and on the resulting revenue gained. The joint dynamic
pricing of multiple perishable products under a consumer choice
model was investigated by Akcay, Natarajan, and Xu (2010), who
formulate the problem as a stochastic dynamic program where
consumer behavior depends on the nature of product differentia-
tion. Kim and Bell (2011) study the impact of price-driven substi-
tution on a firms’ pricing and production capacity decisions for a
single period during which the firm sells to multiple segments.

The papers listed above have assumed knowledge of model
parameters. However, it could be argued that the real-world
demand model is more complex, given that parameters are
unknown and, therefore, modeling errors may arise through
assumptions that are made for the purpose of analytical tractabil-
ity (Lim & Shanthikumar, 2007). Estimating the demand for ser-
vices is difficult, especially when faced with increasing numbers
of interdependent services, and dynamic pricing models in the
aforementioned literature have therefore had to make assumptions
regarding customer behavior. The possibility of substitution across
products and services has a significant impact on both on the prob-
ability distribution of demand and the total revenue gained. In this
article we develop methods for learning the demand response
functions over time.

Given the complexity of dynamic programming, instead, when
modeling real-world problems a good approach is to use of
heuristics (e.g., Burkart, Klein, & Mayer (2012), Sen (2013)) or
reinforcement-learning. In this article we are going to explore
the use of reinforcement learning as this is an ideal method for
solving the pricing problem in situations when both the probability
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