
A procedure to detect problems of processes in software development
projects using Bayesian networks

Mirko Perkusich a,⇑, Gustavo Soares a, Hyggo Almeida a, Angelo Perkusich b

a Department of Computing and Systems, Federal University of Campina Grande, Rua Aprigio Veloso, 882, Bodocongo, 58109 900 Campina Grande, PB, Brazil
b Department of Electrical Engineering, Federal University of Campina Grande, Rua Aprigio Veloso, 882, Bodocongo, 58109 900 Campina Grande, PB, Brazil

a r t i c l e i n f o

Article history:
Available online 20 August 2014

Keywords:
Software process simulation modeling
Bayesian networks
Software process management
Software development project

a b s t r a c t

There are several software process models and methodologies such as waterfall, spiral and agile. Even so,
the rate of successful software development projects is low. Since software is the major output of soft-
ware processes, increasing software process management quality should increase the project’s chances
of success. Organizations have invested to adapt software processes to their environments and the char-
acteristics of projects to improve the productivity and quality of the products. In this paper, we present a
procedure to detect problems of processes in software development projects using Bayesian networks. The
procedure was successfully applied to Scrum-based software development projects. The research results
should encourage the usage of Bayesian networks to manage software processes and increase the rate of
successful software development projects.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, software processes have evolved to take advan-
tage of the organizations’ structure and capabilities of human
resources as well as the specific characteristics of the systems that
they develop. There are several software processes models and
methodologies such as waterfall, spiral and agile that are best sui-
ted depending on the project’s and organizations’ characteristics.
For example, some would recommend waterfall for organizations
with defined processes and large software development projects
for a system with high criticality such as an online banking system.
On the other hand, others would recommend agile for a project
with a complex user interface and low criticality such as a social
network application.

Even though software processes have evolved, there is still a low
rate of successful software projects. According to a study performed
in 2008 (Emam & Koru, 2008), only between 46 and 55 percent of IT
projects succeed. For an applied discipline, this is a low success rate.
Since software is the major output of software processes and soft-
ware development projects, they are both correlated. Increasing
the software processes management quality should increase the
software development project’s chances of success.

One approach to assess and manage software processes is
through software process simulation modeling (Kellner,
Madachy, & Raffo, 1999). In these approach, researchers construct
models that represent software processes to assist management
and increase the project’s chances of success. With this purpose,
model developers use techniques such as system dynamics, discrete
events simulation and Bayesian networks (Zhang, Kitchenham, &
Pfahl, 2008). Even though this approach has the potential to
encompass key factors of software process models such as specifi-
cation, quality and development (Sommerville, 2010), in most
cases, researchers have used it for a limited scope of processes.
For instance, Abouelela and Benedicenti (2010) and Jeet, Bhatia,
and Minhas (2011a) applied this approach only for quality man-
agement. Furthermore, most studies do not present a procedure
to use the model. A procedure to construct and use models to assist
on software process management is essential to give model devel-
opers a common knowledge and instructions to optimize the
chances of constructing a model that best suits the project that it
will be applied to.

By modelling software development processes key factors, it is
possible to assist on continuous improvement by detecting their
problems. In this paper, as shown in Section 3, we present a proce-
dure to construct and use Bayesian networks for this purpose. The
proposed procedure can be applied to detect problems in any soft-
ware development methodology or framework.

We used Bayesian networks due to their capability to handle
uncertainty and also because of their ease of understanding and

http://dx.doi.org/10.1016/j.eswa.2014.08.015
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: mirko.perkusich@copin.ufcg.edu.br (M. Perkusich), gsoares@

computacao.ufcg.edu.br (G. Soares), hyggo@dsc.ufcg.edu.br (H. Almeida), perkusic@
dee.ufcg.edu.br (A. Perkusich).

Expert Systems with Applications 42 (2015) 437–450

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.08.015&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.08.015
mailto:mirko.perkusich@copin.ufcg.edu.br
mailto:gsoares@computacao.ufcg.edu.br
mailto:gsoares@computacao.ufcg.edu.br
mailto:hyggo@dsc.ufcg.edu.br
mailto:perkusic@dee.ufcg.edu.br
mailto:perkusic@dee.ufcg.edu.br
http://dx.doi.org/10.1016/j.eswa.2014.08.015
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


modification by practitioners. Researchers have applied this tech-
nique for expert systems in areas such as software maintenance
project management (de Melo & Sanchez, 2008), safety control in
complex project environments (Zhang, Wu, Ding, Skibniewski, &
Yan, 2013) and performance forecast of innovation projects (de
Oliveira, Possamai, Dalla Valentina, & Flesch, 2012).

To validate the procedure, we applied it to Scrum-based soft-
ware development projects. We chose Scrum because it is the most
popular agile framework (VersionOne, 2013), has an active com-
munity and specialized organizations that support its state of art
such as Scrum Alliance and Scrum.org. Our validation reasoning is
similar to Lee, Park, and Shin (2009), in which the authors present
a procedure to construct and use Bayesian network for risk manage-
ment in large engineering projects and validate it by applying it to
a specific purpose: the Korean shipbuilding industry. We divided
the procedure validation into two steps: (i) validate the Bayesian
network and (ii) its usage process. To validate the Bayesian network,
as shown in Section 4.6.1, we individually tested its node probabil-
ity tables and used simulated scenarios to test its outputs. To val-
idate the Bayesian network usage process, as shown in Section 4.6.2,
we performed a case study for two real projects in a company
located in Brazil. For both cases, it helped to improve the quality
of the processes thereby improving the project’s chances of success
with positive cost-benefit.

This paper is organized as follows: in Section 2, we present rel-
evant literature review focusing on software processes evolution,
software process simulation modelling, Bayesian networks and
Scrum; in Section 3, we present the procedure in details and a
guideline to build Bayesian networks for software processes; in Sec-
tion 4, we present an overview of the procedure’s application to
Scrum-based software projects, which Perkusich, de Almeida, and
Perkusich (2013a) presents in detail, and information regarding
its validation which encompassed the Bayesian network and its
usage process; and, in Section 5, we present our conclusions, cur-
rent limitations and future works.

2. Literature review

2.1. Software processes

According to Sommerville (2010), software processes are inter-
leaved sequences of technical, collaborative, and managerial activ-
ities with the overall goal of specifying, designing, implementing,
and testing a software system. Furthermore, they can be described
with roles, products, and pre- and post-conditions. According to
Boehm (1988), they provide guidance on the order in which a pro-
ject should carry out its major tasks. Over the years, software pro-
cesses have evolved to handle the expectations of the software
development projects in the best way possible. As a consequence,
several software process models and methodologies were pro-
posed in an attempt to increase the chances of success of the soft-
ware development projects. Each of these had their advantages and
disadvantages.

According to Boehm (2006), during the early years of software
engineering in the 1950s, software processes were plan-driven
and sequential because software projects were managed as hard-
ware projects. During the 1960s, because software could be easily
modified, many programmers started to use the ‘‘code and fix’’
approach and this created heavily patched spaghetti code.

In the 1970s, as a reaction to the problems caused by the ‘‘code
and fix’’ approach, waterfall and formal methods were proposed.
The waterfall process represents the fundamental process activi-
ties as process phases (Royce et al., 1970). It was intended to be
iterative but it was interpreted as sequential. Formal methods
are mathematical techniques, often supported by tools, for

developing software and hardware systems. Mathematical rigor
enables users to analyze and verify these models at any part of
the program life-cycle. These parts are: requirements engineering,
specification, architecture, design, implementation, testing, main-
tenance, and evolution (Woodcock, Larsen, Bicarregui, &
Fitzgerald, 2009). As a reaction to these heavy-weight processes,
the Rapid Application Development (RAD), which is incremental
and iterative (Martin, 1991), was proposed.

Later in the 1980s, software process standards were proposed to
avoid process noncompliance and Software Capability Maturity
Models were used to assess an organization’s software process
maturity. The Software Capability Maturity Model (SW-CMM)
and ISO-9001 were created and largely used. The SW-CMM pro-
vides an effective framework for both capability assessment and
improvement (Humphrey, 1989). ISO-9001 is part of the ISO-
9000 family of standards that is related to quality management
systems. It is not specific for software development, but it was lar-
gely used for external quality assurance of software development
projects. In 1987, Osterweil (1987) proposed the usage of program-
ming techniques and formalisms to express software process
descriptions. Furthermore, during the 1980s new software devel-
opment processes were proposed such as evolutionary
(McCracken & Jackson, 1982), Cleanroom (Mills, Dyer, & Linger,
1987) and risk-driven spiral (Boehm, 1988).

During the 1990s, due to the need to reduce time-to-market, a
major shift occurred away from sequential models towards agile
methods such as Adaptive Software Development (ASD)
(Highsmith, 1999), Crystal (Cockburn, 2001), Dynamic Systems
Development (DSDM) (Stapleton & Constable, 1997), eXtreme Pro-
gramming (XP) (Beck, 2000), Feature Driven Development (FDD)
(Coad, de Luca, & Lefebvre, 1999), Kanban (Anderson, 2010), Scrum
(Cohn, 2009) and Scrumban (Ladas, 2009). This approach relies on
lightweight processes with an incremental approach to software
specification, development, and delivery to maximize value deliv-
ery to the customers. It intends to deliver working software quickly
to users, who can then propose new and changed requirements to
be included in later iterations of the system (Sommerville, 2010).
On the other hand, even though lightweight (agile) software pro-
cesses arose, heavyweight (plan-driven) software processes were
still used and new ones were proposed in the late 1990s and the
following years such as the Unified Software Development Process
(Jacobson, Booch, & Rumbaugh, 1999) and the Rational Unified Pro-
cess (RUP) Kruchten (2003). In general, the choice of the best suited
software process for a project depends on the type of product, size
of the project, and the business requirements. According to
Sommerville (2010), agile methods are best suited for small or
medium-sized projects with low criticality. Plan-driven methods
are best suited for large companies with defined processes and
large projects.

Software companies have paid greater attention as to improve
process productivity and quality of the delivered products. As a
consequence, the evaluation of software processes became a very
important issue because software is its major outcome (Li, Li,
Wu, & Song, 2012). Software processes can be improved by process
standardization. This leads to improved communication, a reduc-
tion in training time, and also makes automated process support
more economical.

2.2. Software process simulation modeling

Another way to improve software processes is through software
process simulation modeling because it can support software pro-
cess management (Kellner et al., 1999). The goal of software pro-
cess simulation modeling is to use technologies, people, and tools
to collaboratively increase the chances of success of software
development projects. These models may focus on development

438 M. Perkusich et al. / Expert Systems with Applications 42 (2015) 437–450



Download English Version:

https://daneshyari.com/en/article/382948

Download Persian Version:

https://daneshyari.com/article/382948

Daneshyari.com

https://daneshyari.com/en/article/382948
https://daneshyari.com/article/382948
https://daneshyari.com

