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a b s t r a c t

People often want to know the root cause of things and events in certain application domains such as
intrusion detection, medical diagnosis, and fault diagnosis. In many of these domains, a large amount
of data is available. The problem is how to perform root cause analysis by leveraging the data asset at
hand. Root cause analysis consists of two main functions, diagnosis of the root cause and prognosis of
the effect. In this paper, a method for root cause analysis is proposed. In the first phase, a causal knowl-
edge model is constructed by learning a Bayesian belief network (BBN) from data. BBN’s backward and
forward inference mechanisms are used for the diagnosis and prognosis of the root cause. Despite its
powerful reasoning capability, the representation of causal strength in BBN as a set of probability values
in a conditional probability table (CPT) is not intuitive at all. It is at its worst when the number of prob-
ability values needed grows exponentially with the number of variables involved. Conversely, a fuzzy
cognitive map (FCM) can provide an intuitive interface as the causal strength is simply represented by
a single numerical value. Hence, in the second phase of the method, an intuitive interface using FCM is
generated from the BBN-based causal knowledge model, applying the migration framework proposed
and formulated in this paper.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Identifying the root cause and effect of an event has become a
very important issue in some domains such as security, medical,
mechanical and others. Root cause analysis (RCA) is able to identify
the relationship between the causes and effects of an event and per-
form diagnosis and prognosis. Diagnosis means finding the cause
and prognosis means predicting the effect. The fuzzy cognitive
map (FCM) and the Bayesian belief network (BBN) are the two
major frameworks used in RCA. BBN is a powerful modelling tool
in data-rich domains. It has an ability to learn from data. In addi-
tion, it supports an efficient evidence propagation mechanism,
which is very useful in the RCA process. Moreover, BBN is a more
mature framework than other RCA frameworks because many
BBN software tools have been introduced to and commercialised
in today’s market, such as Hugin, Netica, BayesiaLab and others.

After the causal model of a domain is constructed, the presenta-
tion of causal knowledge is the next concern in this study. Repre-
senting causal knowledge in an intuitive way is vital, especially

for knowledge acquisition and information sharing. FCM is simpler
and more intuitive in interpreting causal knowledge than BBN
(Cheah, Kim, Yang, Choi, & Lee, 2007). A good understanding of
causal knowledge enables us to make successful causal reasoning
and strategic decisions manually. A method which integrates the
BBN and FCM is proposed in this paper to leverage the merits of
both causal modelling approaches within a unified framework.
The reasons for the integration are to reduce the human effort by
learning the causal model from the data automatically and to pres-
ent the model in an intuitive way. BBN is used to learn the causal
model and to perform the RCA because of its expressiveness and
powerful causal reasoning capability. FCM is used to present the
causal knowledge in an intuitive way because of its simplicity.

In order to provide a powerful RCA capability using BBN and an
intuitive presentation of causal knowledge using FCM, a method to
migrate BBN to FCM is proposed. Although BBN and FCM are causal
knowledge approaches which share some common features in their
representation, there are also some differences between them.
Hence, some modifications need to be made before the migration
takes place. The first step of the method involves discovering the
individual causal effects from a conditional probability table (CPT)
as CPT represents the combination of multiple causal effects. There-
fore, migration of BBN to FCM involves transforming a quantitative
to a qualitative representation. A conditional probability equation
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is used to discover the probability of the increase for an event when
the cause event has increased. The value is stored in a new CPT and
the combination of positive influences calculated for subsequent
use. The next step of the method generates an FCM-compatible
BBN to address the range of difference between BBN and FCM by
using Pearson’s correlation coefficient equation. Once the fuzzy-
compatible probability has been constructed and reorganised, the
transformation from probability to possibility by adoption of Klir’s
equation will be performed. The causality sign will be determined
at the last stage to generate a proper FCM.

2. Literature study

2.1. Root cause analysis (RCA)

There is a cause behind every problem. To avoid the problem
persisting, localisation and elimination of its cause is of the utmost
significance. RCA is there to address the problem or non-confor-
mance by localising the true cause and implementing corrective
action to prevent recurrence of the problem (Rooney & Heuvel,
2004). In the past, RCA was well-known in industrial psychology
and was utilised in the analysis of many important industrial acci-
dent cases. RCA is alternatively referred to as error analysis, root
cause localisation, root cause diagnosis, fault localisation, causal
reasoning, causal discovery and problem determination (Reason,
2000). Kiciman and Subramanian (2005) claimed that the process
of localising the root cause is extremely important, especially in
large-scale systems. The evolution of communication systems has
contributed to unprecedented growth in the number of internet
users, which has in turn produced a large amount of data flow.
As a result, identifying the cause of a system which fails to function
properly is a very challenging task. In addition, identification of the
root cause in today’s enterprise systems is still usually performed
manually (Wong & Debroy, 2009). Identifying the causes manually
in such a data-rich domain is very time-consuming and experi-
enced technical experts are needed. Moreover, the reliability and
performance of a system are always a prerequisite in the globalised
world. Detection and diagnosis of causes or faults must be accu-
rately performed and completed in a short period of time.

2.2. RCA with BBN and FCM

Though BBN and FCM have been applied in various domains,
BBN is selected by many researchers for building causal models
because of its soundness and expressiveness. A causal model can
be built by two methods, manual and automated (Korb &
Nicholson, 2003). Manual construction of a causal model is a way
to acquire knowledge from experts in a particular domain. Con-
struction of BBN by hand involves several development stages.
First, the relevant variables of the event need to be selected and
captured by interviewing experts in particular domains. In the
second stage of the construction, the conditional independence
or dependence relationships among the variables will be identified
and represented in a graphical structure. The causality relation-
ships obtained are based on the interviews with the domain
experts and represented in a graph by taking the causality sign
to determine the arcs direction between the variables. Next, the
assessment and verification of the probabilities needed for the net-
work under development will be facilitated because the probabilis-
tic and logical constraints among the domain variables are known.
Once the graphical structure has been constructed, the CPT for each
variable needs to be built. The conditional probabilities can be
obtained from the domain expert. Finally, an assessment of the
completed BBN will be done by performing a sensitivity analysis.

The automated method of BBN construction involves learning
the BBN causal model from data. This method significantly reduces
the effort required for eliciting causal knowledge from the domain
experts. There are two stages of learning in BBN, structure learning
and parameter learning. In BBN, the DAG is called the structure and
the values in the conditional probability distribution are called the
parameters (Neapolitan, 2003). Structure learning in BBN is a
harder problem algorithmically than parameter learning. BBN
parameter learning means learning the strength of dependencies
as encoded by the entries in the CPT.

A new method for acquiring probabilities from domain experts
has been designed to elicit big number probabilities in reasonable
time and tested in oesophageal cancer analysis (Van der Gaag,
Renooij, Witteman, Aleman, & Taal, 2002). Though the assessment
rate by the domain expert can hit 150 probabilities per hour with
the proposed method, the accuracy of probabilities is not absolute.
Furthermore, finding an expert in a particular domain is always a
big challenge, especially unpopular domains. However, Yet,
Perkins, Marsh, and Fenton (2011) presented a method of building
causal BBN by knowledge elicitation with a clinician as domain
expert. Three stages of knowledge modelling are outlined to
decrease the semantic mistakes in the final BBN model and provide
understandable immediate models. However, the method pro-
posed has not been completely developed and is only applicable
to a few attributes. Other than that, causal probabilistic graphical
models can be built with an expert system approach. Athanasiou
and Clark (2009) built a causal model based on the rule-based
DIMITRA system for the caring procedure to be followed for wheel-
chair users with spinal injury. Eleven qualified staff nurses partic-
ipated in the elicitation of the conditional probabilities of signs and
symptoms given specific diagnoses. The diagnostic performance
tested by the causal BBN built is equally promising but each expert
may have different assumptions and this could lead to bias when
the diagnostic performance test is performed. Moreover, manual
construction of BBN needs to elicit knowledge from human experts
and could be very time-consuming.

The data mining approach is the other method which is com-
monly used in BBN without explicit access to the knowledge of
human experts. However, several requirements need to be fulfilled
in order to construct a good BBN with this approach. The domain
has to be a data-rich domain which can provide enough data and
valuable information for the analysis and construction of the causal
model. The data must be collected very carefully to permit reliable
identification of likelihood relationships. Moreover, the missing
values in the dataset have to be filled in based upon estimated
probabilities of these values or amputated from the dataset. Learn-
ing BBN from data involves two stages which are structure learning
and parameter learning. Medina-Oliva, Iung, Barberá, Viveros, and
Ruin (2012) integrated several RCA methods to identify the bad
physical actors which cause performance deviations in an indus-
trial system. They compared BBN with other RCA methods and
concluded that BBN is able to deal with issues such as prediction
or diagnostic optimisation, data analysis of feedback, experience,
deviation detection and model updating and multi-state elements.
Jiang, Neapolitan, Barmada, and Visweswaran (2011) designed a
combinatorial epistasis learning method called BNMBL to con-
struct BBN epistatic models. They concluded that representing epi-
static interactions with BBN models and scoring them with a BBN
scoring criterion holds promise for identifying epistatic genetic
variants in data. The data mining approach allows BBN to learn
structure from a large number of variables in the shortest time
(Cussens, 2012) compared with knowledge-based BBN. Although
the data mining approach has been widely applied in BBN, the
capability of BBN has not been fully exploited. This literature
applied BBN only in the structure learning process, which is only
a part of BBN’s capabilities. The powerful root cause analysis
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