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a b s t r a c t 

The prediction of crystal structures is one of the most essential challenges in designing novel functional 

materials. A data-driven prediction technique that uses the database of known crystal structures and 

substitutes ions among materials of known crystal structures to concoct new crystal structures has been 

proposed. This technique has been applied to generate crystal-structure candidates for the purpose of 

first-principles-calculation-based high-throughput computational screening. However, this technique has 

a functional limitation that the ion substitution tendencies are available only for typical ions such that 

their associated crystal structures appear in well-known materials. To overcome such a limitation, this 

work introduces an idea of collaborative filtering to the calculation of the ionic substitution tendencies. 

Based on this idea, we develop symmetric matrix factorization (SMF) method to model underlying sub- 

stitution conditions. In addition, we present a symmetric matrix co-factorization (SMCF) method to in- 

corporate additional knowledge pertaining to chemical properties in estimating the substitution tenden- 

cies among ions with extremely small amount of previous knowledge in the database. The performance 

of the prediction is investigated along with existing techniques through in silico experiments using real 

crystal-structure database. The numerical results show that the proposed SMF- and SMCF-based predic- 

tion outperform existing techniques in terms of the prediction accuracy. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The prediction of the atomic-level crystal structure is a chal- 

lenging fundamental task in the discovery of new functional ma- 

terials. To assess its difficulty and importance, Maddox (1988) has 

published an article to question the predictability of crystal struc- 

tures for first-principles calculation using the knowledge of chem- 

ical compositions only. However, recent advances in computational 

resource and quantum mechanics theory, such as density func- 

tional theory ( Hohenberg & Kohn, 1964 ), have made a remarkable 

progress in modeling of the ground-state and finite temperature 

behavior (e.g., 0˜K energy) for a given crystal structure. The predic- 

tion of the crystal structure can be cast as an optimization prob- 

lem: The objective function is the ground-state energy obtained by 

first-principles calculations, and unknown variables correspond to 

three-dimensional coordinates of atoms in a unit cell. From this 

mathematical framework, the prediction of the crystal structure is 

carried out by comparing a set of candidate structures in terms of 
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estimated energy and choosing the lowest-energy structure as the 

ground-state configuration. 

However, it still remains very difficult to predict the crystal 

structure and its associated three-dimensional coordinates of all 

atoms in a computational way for several reasons: First, the en- 

ergy landscape associated with structure configurations has a great 

number of local minima, which prevent finding the global mini- 

mum, or the ground-state structure configuration, using a simple 

gradient search. Second, there are infinitely many configurations of 

three-dimensional coordinates for atoms. Thus, the solution space 

is so huge that the entire solution space cannot be explored. Third, 

first-principles calculations for evaluating the objective function, 

i.e., the ground-state energy, still require considerable amount of 

time and computational efforts. 

To tackle such issues, several meta-heuristic approaches, such 

as simulated annealing, genetic algorithm variants, random sam- 

pling, have been developed ( Woodley & Catlow, 2008 ). Most of 

them deal with the solution space exploration using a simple 

objective function which avoids computationally demanding first- 

principles calculations. Although those approaches have lead a no- 

ticeable progress in the crystal structure prediction, they fail to 

provide the prediction structures quickly because they rely basi- 

cally on solving an extremely complicated optimization problem. 

In particular, most of them are not suitable for high-throughput 
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Fig. 1. Schematic diagram of the ionic substitution algorithm. Based on an origin structure, the most probable structure which maximizes the substitution probabilities is 

generated. 

computational screening (HTCS) which chooses promising candi- 

dates for functional materials among a huge number of candidates 

( Jain et al., 2011 ). The computational infrastructure for HTCS in- 

cludes the structure database, the computational resource, and the 

job management. The automation of those tasks in the data pro- 

cessing allows the computational screening of a massive amount 

of candidate materials. The benefits of this framework have been 

demonstrated for last few decades, in various studies, e.g., find- 

ing Li-ion battery anode materials ( Kirklin, Meredig, & Wolverton, 

2013 ) and radiation detector materials ( Ortiz, Eriksson, & Klinten- 

berg, 2009 ). 

To find crystal structures of high stability without quantum- 

mechanics calculations, novel structure prediction techniques have 

been introduced using data mining techniques ( Fischer, Tibbetts, 

Morgan, & Ceder, 2006; Hautier, Fischer, Ehrlacher, Jain, & Ceder, 

2006 ). Those techniques share a common underlying idea of con- 

structing a probability model using the structural information from 

known crystal structures in order to quantify the stability of par- 

ticular structural configurations (see Fig. 1 ). To be more specific, 

the probability model of a given chemical composition enables 

to seek feasible structural configurations from the set of existing 

structures and to choose the most probable one. Those techniques 

have proved useful in the discovery of novel chemical materials. 

For example, Wu, Lazic, Hautier, Persson, and Ceder (2013) has em- 

ployed the ionic substitution algorithm ( Hautier et al., 2006 ) to 

find new functional water-splitting photocatalysts. However, this 

method cannot estimate the substitution probability among ions 

where no substitution is found in the data set. Those missing val- 

ues severely undermine the prediction performance. 

To improve the predictive accuracy of the ionic substitution 

algorithm ( Hautier et al., 2006 ), this paper introduces machine 

learning techniques used frequently for collaborative prediction 

( Bobadilla, Ortega, Hernando, & Gutierrez, 2013; Su & Khoshgoftaar, 

2009 ): symmetric matrix factorization (SMF) and symmetric ma- 

trix co-factorization (SMCF). Those approaches utilize a low-rank 

approximation (via matrix factorization) for the data set organized 

in a matrix form with an individual element corresponding to the 

substitution probability between two ions. Meanwhile, some miss- 

ing elements are inevitable outcomes for this data matrix. To han- 

dle them, several simple low-rank matrices are found such that all 

filled elements of the data matrix are equal to the correspond- 

ing elements of the product of those simple matrices. Thus, the 

data matrix is reconstructed from the product of those component 

matrices. In this step, those elements in the reconstructed matrix 

at the position of missing elements are filled. Furthermore, the 

weighted matrix factorization (i.e., SMF) model is extended to the 

weighted matrix co-factorization (i.e., SMCF) model to incorporate 

the prior-knowledge matrix along into the reconstructed data ma- 

trix. 

2. Ionic substitution approach 

Chemical experimentalists frequently make attempts to replace 

chemical elements (i.e., ions) in a known chemical compound with 

another to develop a new idea. It basically originates from the as- 

sumption that, if two elements have similar atomic-level proper- 

ties, the new structure obtained from the substitution still retains 

a similar level of stability. The ionic substitution algorithm ( Hautier 

et al., 2006 ) incorporates this idea by learning how likely the sub- 

stitution of certain ions in a compound results in another com- 

pound with the same crystal structure in silico from the knowl- 

edge based on the experimental database. To this end, the likeli- 

hood of the substitution is characterized by a probabilistic model 

developed in the way presented in the sequel. 

2.1. Substitution probabilistic model 

A compound comprised of n different ions is represented in an 

n -dimensional vector as x = { x (1) , x (2) , . . . , x (n ) } where x ( i ) denotes 

an i -th ionic species. The ionic substitution probability between 

two compounds x and y with the same crystal structure is defined 

by: 
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where f ( 
i ) 

ab 

(
x ( i ) , y ( i ) 

)
is a binary feature function that yields one, 

if two ions x (i ) = a and y (i ) = b in position i are switched, and 

zero otherwise. A positive parameter λ(i ) 
ab 

denotes the relative fre- 

quency of the corresponding substitution and λ denotes the vector 

of model parameters. Also, Z is a normalization constant (or a par- 

tition function from science’s perspectives) given by: 



Download English Version:

https://daneshyari.com/en/article/382988

Download Persian Version:

https://daneshyari.com/article/382988

Daneshyari.com

https://daneshyari.com/en/article/382988
https://daneshyari.com/article/382988
https://daneshyari.com

