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a b s t r a c t 

Random survival forests (RSF) are a powerful method for risk prediction of right-censored outcomes in 

biomedical research. RSF use the log-rank split criterion to form an ensemble of survival trees. The most 

common approach to evaluate the prediction accuracy of a RSF model is Harrell’s concordance index for 

survival data (‘ C index’). Conceptually, this strategy implies that the split criterion in RSF is different from 

the evaluation criterion of interest. This discrepancy can be overcome by using Harrell’s C for both node 

splitting and evaluation. We compare the difference between the two split criteria analytically and in 

simulation studies with respect to the preference of more unbalanced splits, termed end-cut preference 

(ECP). Specifically, we show that the log-rank statistic has a stronger ECP compared to the C index. In 

simulation studies and with the help of two medical data sets we demonstrate that the accuracy of RSF 

predictions, as measured by Harrell’s C , can be improved if the log-rank statistic is replaced by the C 

index for node splitting. This is especially true in situations where the censoring rate or the fraction of 

informative continuous predictor variables is high. Conversely, log-rank splitting is preferable in noisy 

scenarios. Both C -based and log-rank splitting are implemented in the R package ranger . We recom- 

mend Harrell’s C as split criterion for use in smaller scale clinical studies and the log-rank split criterion 

for use in large-scale ‘omics’ studies. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Random forests are among the most powerful methods for risk 

prediction in the biomedical sciences. The basic idea of random 

forests is to fit an ensemble of classification and regression trees 

(CART) to bootstrap samples that are generated from a set of learn- 

ing data ( Breiman, 2001 ). Ensemble predictions are obtained by av- 

eraging predictions from the individual trees ( Kruppa et al., 2014 ). 

An important element of random forests is that only a small num- 

ber of the predictor variables is made available for splitting, which 

is done at random in each node of a tree. With this randomiza- 

tion element, trees are decorrelated, and the variance of the en- 

semble prediction is reduced. The random selection of predictors 
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also constitutes the main difference between random forests and 

earlier tree-based ensemble methods, such as bootstrap aggregat- 

ing (bagging; Breiman, 1996 ). 

Random forests were originally proposed for classifying di- 

chotomous outcomes ( Breiman, 2001 ) and have been extended 

over the past 15 years in a number of ways. For example, vari- 

ous methods have been developed for judging the importance of 

predictor variables, which may serve as a basis for variable selec- 

tion ( Díaz-Uriarte & Alvarez de Andrés, 2006; Ishwaran, Kogalur, 

Chen & Minn, 2011 ). It is also possible to estimate individual prob- 

abilities for both dichotomous and categorical outcomes ( Kruppa, 

Schwarz, Arminger & Ziegler, 2013 ) and to analyze continuous out- 

comes as well as right-censored event times ( Ishwaran, Kogalur, 

Blackstone & Lauer, 2008 ). Finally, considerable progress has been 

made in understanding the statistical properties of random forests, 

including results on consistency and asymptotic normality ( Arlot 

& Genuer, 2014; Biau, 2012; Mentch & Hooker, 2016; Scornet, 

Biau & Vert, 2015; Wager & Athey, 2015; Wager & Walther, 2015 ). 

http://dx.doi.org/10.1016/j.eswa.2016.07.018 
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Reviews can be found elsewhere; see, e.g., Boulesteix, Janitza, 

Kruppa & König (2012) ; Kruppa et al. (2014) ; Touw et al. (2013) ; 

Ziegler & König (2014) . 

The standard approach to analyze survival outcomes with ran- 

dom forests is termed random survival forests (RSF; Ishwaran et al., 

2008) . In RSF, an ensemble of survival trees is built, and tree split- 

ting is performed by maximizing the log-rank statistic in each 

node. Ensemble predictions are given by averages over the cu- 

mulative hazard estimates in the terminal nodes of the trees, as 

estimated by the Nelson–Aalen estimator. The most common ap- 

proach to evaluate the predictive performance of the ensemble is 

the calculation of the C statistic for survival data, also termed ‘Har- 

rell’s C ’ ( Harrell, Califf, Pryor, Lee & Rosati, 1982; Ishwaran et al., 

2008 ). A value of C = 0 . 5 corresponds to a non-informative pre- 

diction rule whereas C = 1 corresponds to perfect association, im- 

plying that Harrell’s C is an easy-to-interpret coefficient that ac- 

counts for the whole range of the observed survival times ( Schmid 

& Potapov, 2012 ). In biomedical applications, in particular in the 

analysis of gene expression data, C often ranges between the val- 

ues 0.6 and 0.75. For example, estimates in this range were re- 

ported, among others, by Van Belle, Pelckmans, Van Huffel and 

Suykens (2011a) , Schröder, Culhane, Quackenbush and Haibe-Kains 

(2011) and Zhang, Xia, Lu, Sun and Wang (2013) . A remaining dis- 

advantage of the RSF approach with C -based evaluation, however, 

is that the split criterion used for tree building is different from 

the performance criterion used to measure prediction accuracy. As 

a result, the performance measure of interest, i.e., Harrell’s C , may 

not be fully optimized by the log-rank splits and may even have 

characteristics that are not reflected by the log-rank statistic. 

In this work, we therefore investigate whether the performance 

of RSF can be improved if Harrell’s C is used for both node splitting 

and the evaluation of prediction accuracy. In other words, the idea 

is to replace the log-rank split criterion by Harrell’s C and to de- 

termine split points that are optimal with respect to Harrell’s C in 

each node. In Section 2 we first provide a description of the ran- 

dom forest algorithm for survival data, which is followed by the- 

oretical considerations on the two split criteria. In two simulation 

studies and with the re-analysis of two cancer data sets ( Section 3 ) 

we finally demonstrate that the use of Harrell’s C can lead to sys- 

tematic improvements in the predictive performance of RSF. 

2. Methods 

2.1. Random survival forests 

Algorithm 1 provides a description of the RSF algorithm for n 

independent observations and p predictor variables. Before the al- 

gorithm starts, the number of trees, termed ntree , of the RSF and 

the number of predictor variables mtry available for splitting at 

each node need to be defined. Recently, Lopes (2015) derived the 

limiting distribution of the prediction error for dichotomous end- 

points and showed how this finding may be used for determin- 

ing optimized values of ntree . Kruppa et al. (2013) demonstrated 

how the hyper-parameter mtry can be optimized. 

An important feature of the RSF algorithm is the use of the 

log-rank statistic to split observations at each node and in every 

tree (Step 2 in Fig. 1 ). The log-rank statistic will be formally intro- 

duced below. At a specific node, the variable and the split point 

that maximize the log-rank statistic over all possible split points 

and all mtry variables are used for splitting. With this approach, 

the dissimilarity of the survival curves in the two children nodes 

is maximized. An alternative criterion for node splitting in Step 2 

is Harrell’s C , which will also be considered below. 

The performance of the random survival forest is evaluated us- 

ing independent test data in Steps 3 and 4 of the algorithm. If no 

independent data are available, the out-of-bag data generated in 

Step 1 are used to evaluate the predictive performance. It is impor- 

tant to note that several summary measures are available in Step 3 

of the algorithm. For example, Kaplan–Meier or Nelson–Aalen es- 

timates can be derived in each terminal node, and results may be 

averaged over all trees. In addition, confidence intervals can be ob- 

tained for these estimators ( Mentch & Hooker, 2016; Wager, Hastie 

& Efron, 2014; Wager & Walther, 2015 ). 

2.2. The C statistic and the log-rank statistic as split criteria 

In this section we introduce the use of Harrell’s C as split cri- 

terion, and we start with a theoretical analysis of both Harrell’s C 

and the log-rank statistic. Specifically, we show that both split cri- 

teria are special cases of the Gehan statistic ( Gehan, 1965 ) and that 

they can be obtained from the Gehan statistic by applying different 

standardization and weighting schemes. Since these schemes are 

different, differences can be expected between the two criteria re- 

garding their splitting behavior in RSF. First, we introduce basic no- 

tation and provide formal definitions of the log-rank, C and Gehan 

statistics. Second, we analyze the connection between the mea- 

sures. Third, we provide a description of how Harrell’s C should 

be used as a split criterion in random forests for survival data. 

Notation 

Throughout this paper we assume that RSF are fitted to a 

set of independent and identically distributed data of size n . The 

data are represented by vectors ( ̃  T i , �i , X i 1 , . . . , X ip ) , i = 1 , . . . , n, 

where ˜ T i is a possibly right-censored continuous survival time and 

(X i 1 , . . . , X ip ) 
� is a vector of predictor variables. It is assumed that 

˜ T i is the minimum of the true survival time T i and an independent 

continuous censoring time C i . The variable �i := I( T i ≤ C i ) indi- 

cates whether T i has been fully observed ( �i = 1 ) or not ( �i = 0 ). 

To simplify notation, we assume that there are no tied observed 

survival times in the data. A predictor variable X j , j ∈ { 1 , . . . , p} , 
is called non-informative if the distribution of ˜ T conditional on X j 

does not depend on X j . Otherwise, X j is called informative. 

The events are observed at K ordered time points t (1) < . . . < 

t (K) with K ≤ n . The numbers of events and observations at risk at 

t ( k ) , k = 1 , . . . , K, are denoted by d k and Y k , respectively. 

As described in Step 3 of the RSF algorithm ( Fig. 1 ), the out- 

come of an RSF is calculated from the cumulative hazard estimates 

in the terminal nodes. A one-dimensional score ηi ∈ R is estimated 

for each observation i = 1 , . . . , n, by averaging the cumulative haz- 

ard estimates over all trees and all time points t ( k ) . 

Definition of Harrell’s C 

Harrell’s C ( Harrell et al., 1982 ) is given by 

C = 

∑ 

i, j I( ̃  T i > 

˜ T j ) · I(η j > ηi ) · � j 
∑ 

i, j I( ̃  T i > 

˜ T j ) · � j 

, (1) 

where the indices i and j refer to pairs of observations in the sam- 

ple. The C statistic is the number of concordant pairs of observa- 

tions divided by the number of comparable pairs. Multiplication 

by the factor �j in Eq. (1) discards pairs of observations that are 

not comparable because the smaller survival time is censored, i.e., 

� j = 0 . 

Harrell’s C is designed to estimate the concordance prob- 

ability P( ηj > ηi | T i > T j ), which compares the rankings of 

two independent pairs of survival times T i , T j and predic- 

tions ηi , ηj . The concordance probability evaluates whether 

large values of ηi are associated with small values of T i and 

vice versa. Harrell’ C can also be interpreted as a summary 

measure of the area(s) under the time-dependent ROC curves 

( Heagerty & Zheng, 2005; Schmid & Potapov, 2012 ). A value of 

C = 0 . 5 corresponds to a non-informative prediction rule, whereas 
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