
SBBS: A sliding blocking algorithm with backtracking sub-blocks for
duplicate data detection

GuiPing Wang a,⇑, ShuYu Chen b, MingWei Lin a, XiaoWei Liu c

a College of Computer Science, Chongqing University, Chongqing 400044, China
b College of Software Engineering, Chongqing University, Chongqing 400044, China
c HuaWei Research Institute, Chengdu, Sichuan 610041, China

a r t i c l e i n f o

Keywords:
Data deduplication
Duplicate data detection
Sliding blocking algorithm
Backtracking
SBBS
Content-defined chunking algorithm

a b s t r a c t

With the explosive growth of data, storage systems are facing huge storage pressure due to a mass of
redundant data caused by the duplicate copies or regions of files. Data deduplication is a storage-optimi-
zation technique that reduces the data footprint by eliminating multiple copies of redundant data and
storing only unique data. The basis of data deduplication is duplicate data detection techniques, which
divide files into a number of parts, compare corresponding parts between files via hash techniques
and find out redundant data. This paper proposes an efficient sliding blocking algorithm with backtrack-
ing sub-blocks called SBBS for duplicate data detection. SBBS improves the duplicate data detection
precision of the traditional sliding blocking (SB) algorithm via backtracking the left/right 1/4 and 1/2
sub-blocks in matching-failed segments. Experimental results show that SBBS averagely improves the
duplicate detection precision by 6.5% compared with the traditional SB algorithm and by 16.5% compared
with content-defined chunking (CDC) algorithm, and it does not increase much extra storage overhead
when SBBS divides the files into equal chunks of size 8 kB.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Storage systems often contain redundant copies of data: identi-
cal files or sub-file regions, possibly stored on a single host, on a
shared storage cluster, or backed-up to secondary storage (Meyer
& Bolosky, 2011). Redundant data are caused by duplicate copies
or regions of files. Therefore, the terms ‘‘redundant data’’ and
‘‘duplicate data’’ are interchangeable in the remainder of this pa-
per. With the explosive growth of data, storage systems are facing
increasingly serious storage pressure due to a mass of redundant
data. It is beneficial to reduce duplicate data as many as possible
(Lim, 2011). Through eliminating or reducing redundant data in
storage systems, data deduplication techniques significantly
improve the utilization of storage systems, and reduce the data
volume during network transmission in case of remote backup
(Ao, Shu, & Li, 2010).

Duplicate data detection techniques are the basis of data dedu-
plication. These techniques divide the files (usually, the old version
and the new version of a same file) into a number of parts, compare
corresponding parts between files via hash techniques and find out
redundant data. According to detection granularity, duplicate data

detection techniques can be classified into three categories: file
level, chunk level, and byte level.

File level techniques (Douceur, Adya, Bolosky, Simon, &
Theimer, 2002; Harnik, Pinkas, & Peleg, 2010) compute the hash
values of the whole files via hash functions such as SHA-1, MD5,
etc. These techniques compare the hash values and determine
whether these two files are identical. The implementation of file le-
vel techniques is simple, but the duplicate data detection precision
is quite low. When the new file is modified slightly, the whole file
is considered to be changed and no redundant data is detected.

Chunk level techniques (Bhagwat, Pollack, & Long, 2006;
Denehy & Hsu, 2003; Eshghi & Tang, 2005; Litwin, Long, & Schwarz,
2012; Vrable, Savage, & Voelker, 2009; You, Pollack & Long, 2005)
have a finer granularity. These techniques divide the files into
chunks, and compute the hash value of each chunk. Finally, they
compare the hash values of corresponding chunks between files
and find out redundant chunks. The precision and the time com-
plexity of these techniques depend on the division of chunks and
the selection of hash functions.

Byte level techniques compare the files byte by byte. These tech-
niques have highest detection precision, but meanwhile result in
high time complexity. Therefore, they are not available for large files.

Detection granularity has a significant impact on the precision
and efficiency of duplicate data detection techniques. Chunk level
techniques make a well trade-off between performance and
efficiency.

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.09.040

⇑ Corresponding author. Tel.: +86 18696561721.
E-mail address: w_guiping@163.com (G. Wang).

Expert Systems with Applications 41 (2014) 2415–2423

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.09.040&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.09.040
mailto:w_guiping@163.com
http://dx.doi.org/10.1016/j.eswa.2013.09.040
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Among chunk level techniques, the traditional sliding blocking
(SB) algorithm can be implemented without much effort, and its
duplicate detection precision is relatively high. Therefore, the tra-
ditional SB algorithm is widely adopted in deduplication systems.
However, this algorithm fails to detect redundant data in match-
ing-failed segments resulting from inserting or deleting data seg-
ments in chunks. The precision of this technique will be
improved once this issue is effectively solved.

Accordingly, this paper proposes a novel and efficient sliding
blocking algorithm with backtracking sub-blocks called SBBS for
duplicate data detection. For matching-failed segments, SBBS con-
tinues to detect duplicate data in sub-blocks, thus improving the
detection precision.

The contributions of this paper are mainly listed as follows: (1)
For the traditional SB algorithm, it clearly analyzes operations of
inserting and deleting data in chunks, and deduces the concept
of matching-failed segment due to such operations; (2) Based on
the above analyses, it summarizes the principle of the proposed
SBBS, i.e., improving duplicate data detection precision via back-
tracking the left/right 1/4 and 1/2 sub-blocks of matching-failed
segments; (3) It designs and implements SBBS, which can detect
duplicate data as many as possible in matching-failed segments.

Experimental results show that the proposed SBBS improves the
duplicate detection precision by 6.5% compared with the tradi-
tional SB algorithm and by 16.5% compared with content-defined
chunking (CDC) algorithm, and it does not increase much extra
storage overhead when SBBS divides the files into equal chunks
of size 8 kB.

The remainder of this paper is organized as follows. Section 2
introduces related work. For the traditional SB algorithm, Section 3
analyzes inserting and deleting data in chunks. The proposed SBBS
is detailed in Section 4. Experiments and analyses are presented in
Section 5. Finally, conclusions and future work are given in
Section 6.

2. Related work

2.1. Deduplication & duplicate data detection

The ever-growing volume and value of digital information has
raised a demand for long-term data protection through backup
and archiving systems. Yet redundancy in data aggravates storage
pressure in these systems. Deduplication is critical for improving
the utilization of storage systems. Therefore, it receives sustained
concern in literature.

The foremost step of deduplication is duplicate data detection.
File level, chunk level and byte level duplicate detection techniques
find out redundant data via data matching between files (e.g.,
Eshghi et al., 2005; Min, Yoon, & Won, 2011).

Besides data of traditional structures, a few solutions focus on
duplicate data detection in more complex hierarchical structures
(e.g., XML data). Leitao, Calado, and Herschel (2013) present a no-
vel method for XML duplicate detection, called XMLDup. The most
prominent feature of XMLDup is that it uses a Bayesian network to
determine the probability of two XML elements being duplicates.

Duplicate is one modality of similar documents. The other
modality is near-duplicate. Two documents are near-duplicates if
one document is a modification of the other document. The modi-
fication can be insertion, deletion, or replacement of parts of the
text (Lin, Liao, & Lee, 2013). A few solutions address detecting
near-duplicate documents (de Carvalho, Laender, Goncalves, & da
Silva, 2012; Lin et al., 2013).

Although new storage techniques have been applied, duplicate
data detection is still a continuously concerned issue. For example,
since solid state disks (SSD) based on NAND flash chip have been

deployed as storage devices in computer systems including
personal computers and server storage systems, many studies in
literature address how to identify and eliminate duplicate regions
in consideration of flash memory characteristics (Lim, 2011; Seo &
Lim, 2010; Wu & Wu 2012).

This paper focuses on chunk level duplicate data detection
techniques. In particular, it implements an optimization of the tra-
ditional SB algorithm.

2.2. Chunk level techniques

Chunk level techniques compute hash value of each chunk and
try to find out redundant chunks. Chunk level techniques can be
classified into three typical categories, which are fixed-sized parti-
tion (FSP), variable-sized partition (VSP), and sliding blocking (SB).

2.2.1. Fixed-sized partition
The FSP algorithm illustrated in Fig. 1 works as follows. The old

file is divided into equal and non-overlapping chunks according to
a pre-defined size. The hash value of each chunk is computed and
stored in a table. When a new file is detected, it is divided into
chunks in the same way as the old file is done. For each chunk in
the new file, its hash value is computed. FSP then detects whether
there is a same stored hash value or not. If yes, it marks this chunk
as a redundant chunk. If not, it stores the new hash value and de-
tects next chunk. Extra storage in FSP includes storage space for the
table storing hash values and the disk addresses of associated
chunks.

FSP has several advantages, such as easy implementation, rapid
matching, etc. But it is sensitive to the operations of inserting and
deleting data, even if only a small number of bytes are involved.
Moreover, it is unable to optimize according to the contents of
the files.

2.2.2. Variable-sized partition
A typical technique of VSP is content-defined chunking (CDC)

(Bobbarjung, Jagannathan, & Dubnicki, 2006), also called content-
based chunking (Eshghi et al., 2005). CDC divides files into vari-
able-sized chunks based on files’ content. For example, the Rabin’s
fingerprint (Broder, 1993) is used to partition files into chunks be-
cause it is efficient to compute over a sliding window (Bhagwat,
Pollack, & Long, 2006; Eshghi et al., 2005; You et al., 2005). The size
of each chunk is different, usually ranged between a maximum va-
lue and a minimum one (Denehy et al., 2003; Muthitacharoen,
Chen, & Maziéres, 2001). The CDC algorithm illustrated in Fig. 2
works as follows.

(1) The old file is divided into variable-sized chunks according
to the files’ content in the same way as the new file is done, which
is described below. Then the hash value of each chunk is computed
and stored in a table.

(2) When a new file is detected, a sliding window of fixed-size is
moved from the head of the new file to the end byte by byte. The

Hash value Hash value Hash value

Compare to stored 
hash values Match

found?

Store
hash value

Duplicate
detected

No

Yes

New file

Old filechunk chunk chunk

Fig. 1. Fixed-sized partition algorithm.

2416 G. Wang et al. / Expert Systems with Applications 41 (2014) 2415–2423



Download English Version:

https://daneshyari.com/en/article/383082

Download Persian Version:

https://daneshyari.com/article/383082

Daneshyari.com

https://daneshyari.com/en/article/383082
https://daneshyari.com/article/383082
https://daneshyari.com

