
Expert Systems With Applications 55 (2016) 274–283

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Auditing file system permissions using association rule mining

S. Parkinson

∗, V. Somaraki , R. Ward

Department of Informatics, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH UK

a r t i c l e i n f o

Keywords:

Access control

Auditing

Association rule mining

a b s t r a c t

Identifying irregular file system permissions in large, multi-user systems is challenging due to the com-

plexity of gaining structural understanding from large volumes of permission information. This challenge

is exacerbated when file systems permissions are allocated in an ad-hoc manner when new access rights

are required, and when access rights become redundant as users change job roles or terminate employ-

ment. These factors make it challenging to identify what can be classed as an irregular file system permis-

sion, as well as identifying if they are irregular and exposing a vulnerability. The current way of finding

such irregularities is by performing an exhaustive audit of the permission distribution; however, this re-

quires expert knowledge and a significant amount of time. In this paper a novel method of modelling file

system permissions which can be used by association rule mining techniques to identify irregular permis-

sions is presented. This results in the creation of object-centric model as a by-product. This technique is

then implemented and tested on Microsoft’s New Technology File System permissions (NTFS). Empirical

observations are derived by making comparisons with expert knowledge to determine the effectiveness

of the proposed technique on five di verse real-world directory structures extracted from different organ-

isations. The results demonstrate that the technique is able to correctly identify irregularities with an

average accuracy rate of 91%, minimising the reliance on expert knowledge. Experiments are also per-

formed on synthetic directory structures which demonstrate an accuracy rate of 95% when the number

of irregular permissions constitutes 1% of the total number. This is a significant contribution as it creates

the possibility of identifying vulnerabilities without prior knowledge of how to file systems permissions

are implemented within a directory structure.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

File systems are common amongst the majority of computer op-

erating systems and from a user perspective their primary use is to

securely store files. Modern, multi-user computer systems contain

high quantities of data that require strong access control mecha-

nisms to restrict data access to intended users. Different operating

systems provide different implementations of access control, but

common to the most prevalent is that they provide a customisable

architecture for access control. This is implemented through the

use of both coarse - and fine -grained permissions (De Capitani di

Vimercati, Paraboschi, & Samarati, 2003). Coarse-grained permis-

sions are predefined levels (e.g read, write, full control, etc.) and

fine-grained permissions are customised permissions created from

a set of predefined attributes to represent highly customised ac-

cess control rules. Using a mixture of both types of permissions

∗ Corresponding author. Tel.: +44 1484472525.

E-mail addresses: s.parkinson@hud.ac.uk , parkinson.sl@gmail.com (S. Parkinson),

v.somaraki@hud.ac.uk (V. Somaraki), r.ward@hud.ac.uk (R. Ward).

provides a flexible architecture which can accommodate a large

verity of different access control levels. However, this flexible na-

ture also provides the possibility for complex permission relation-

ships and anomalous permissions which often go undetected.

Administration of file system permissions on large file systems

is both a challenging and cumbersome task as it is often difficult

to conceptualise the large volumes of information available. Due to

the complexities of managing permissions, unforeseen weak and

incorrect allocations are often made. These complexities are usu-

ally the result of there being a large number of directories to se-

cure, a large number of users that need to be correctly assigned,

and a large number of access control rules. There is a wide range of

literature discussing these complexities (Beznosov, Inglesant, Lobo,

Reeder, & Zurko, 2009; Cao & Iverson, 2006; De Capitani di Vimer-

cati et al., 2003), and many factual guides have been produced for

different operating systems (Solomon, 2005; Thomas, 2010). How-

ever, even with such guides, users are left to analyse the large

amount of access control information independently. The level of

their knowledge regarding access control and their system’s con-

figuration often directly determines the quality of their audit, and

thus produces a heavy reliance on expert knowledge.

http://dx.doi.org/10.1016/j.eswa.2016.02.027

0957-4174/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2016.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.02.027&domain=pdf
mailto:s.parkinson@hud.ac.uk
mailto:parkinson.sl@gmail.com
mailto:v.somaraki@hud.ac.uk
mailto:r.ward@hud.ac.uk
http://dx.doi.org/10.1016/j.eswa.2016.02.027

S. Parkinson et al. / Expert Systems With Applications 55 (2016) 274–283 275

When analysing for vulnerabilities within file system permis-

sions they can be divided into two groups of; (1) known system

vulnerabilities, and (2) those relative to the access control struc-

ture implemented within a system. A trivial example of a known

system fundamental is that users should not have access to an im-

portant system directory (e.g C: \ windows \ system32). These are

programmatically easy to find by using a predefined knowledge-

base of potential vulnerabilities. Identifying such vulnerabilities is

at most O (n × v) where n is the number of access control entries

to examine and v is the number of known vulnerabilities. An ex-

ample of a relative vulnerability is an incorrect assignment of per-

mission with respect to an organisation’s implementation of ac-

cess control. For example, the anomaly of one user having write

privileges on a directory where all other users have read access.

Such anomalies are very difficult to identify within access control

as there is no quick method of determining potential vulnerabili-

ties. The consequences of both types of vulnerabilities can be se-

vere and can be generated from both user and software actions.

For example, if a user has an elevated level of permission on a net-

work directory structure, they could unintentionally modify or re-

move important data. A more severe consequence would be if the

user could access data which is sensitive, as this could result in

the organisation breaching the Data Protection Act. It is also possi-

ble that software (such as viruses, etc.) executing under the user’s

credentials could exploit their file system permissions to perform

malicious activity.

Trend mining, in the form of Association Rule Mining (ARM)

(Ma, 1998), has been extensively used to identifying anomalies and

irregularities in many different application areas (Cheng, Lu, Liu, &

Huang, 2015). ARM is a method of automatically identifying inter-

esting relationships amongst variables in large datasets. Interest-

ing relationships are often those that frequently occur; however, in

some applications, such as the one presented in this paper, an in-

teresting relationship is one which occurs infrequently. There have

been many successful applications of ARM for identifying interest-

ing (both frequent and infrequent) relationships in large datasets.

For example, in finance (Barak & Modarres, 2015; Yu, Chen, Wang,

& Lai, 2009), medical data (Somaraki, Harding, Broadbent, & Co-

enen, 2010; Somaraki, Vallati, & McCluskey, 2015), and cellular net-

works (Khatib, Barco, Gmez-Andrades, Muoz, & Serrano, 2015). The

use of ARM is therefore a natural selection for applying to the chal-

lenge of identifying irregularities in file system permissions.

The work presented in this paper is tailored towards Microsoft’s

New Technology File System (NTFS); however, it can be easily

adapted to other file systems. The majority of multi-user environ-

ments in organisations will use Microsoft’s NTFS for providing a

distributed mechanism of file storage. There are many complexi-

ties associated with administrating and auditing file system per-

missions on Microsoft’s NTFS which can result in the creation of

vulnerabilities. The complexity of identifying these vulnerabilities

has resulted in a unhealthy reliance on expert knowledge. The

work presented in this paper helps to remove this unhealthy bal-

ance on expert knowledge and provide a method of auditing file

system permissions for all NTFS users. This paper first provides

a review into related work in the area of aiding auditing of file

system permissions. The next section the provides a description

of NTFS access control structure, highlighting auditing complexi-

ties. At the end of this section, detail is provides on how file sys-

tem permissions are modelled in the work presented in this pa-

per, including the use of an algorithm to combine permissions to

determine the effective permission. This then leads to a descrip-

tion of association rule mining techniques which are useful for

identifying irregularities in file system permissions. In this sec-

tion the chosen technique is also discussed and justified. Empir-

ical observations are then provided where the developed tech-

nique is tested on five diverse real-world file systems. In this

empirical observation, the results are compared to those of a do-

main expert.

2. Related work

Access control is typically defined as a relational model over

the following domains: O the set of objects (i.e. users), the set of

resources R and the set of permissions P . Access control is a char-

acteristic function on the set A ⊆ S × O × R . A subject s is granted

permission r over resource o iff 〈 s, o, r 〉 ∈ A . Access control mod-

els are typically called the access matrix. In many operating sys-

tems the access matrix is stored as an access list, which is asso-

ciated with a resource object and is used to list all subjects and

their permissions. In NTFS, access lists are implemented as Discre-

tionary Access Control List (DACL) models, where only the owner

of a resource is authorised to change its access permissions. How-

ever, in multi-user environments it is possible for any user with

sufficient permission to take ownership of a resource or change its

permission.

Other operating systems also implement access control lists to

manage file system permissions. Unix (including Max OSX and

Linux) and Portable Operating System Interface (POSIX) compliant

systems have a simple system for managing individual file permis-

sions. This is the ability to assign a predetermined set of coarse-

grained permissions (often called “traditional Unix permissions”).

Most of these systems also support the use of Access Control Lists

(ACL), such as POSIX.1e ACLs (coarse-grained) (Nemeth, 2010) or

NFSv4 ACLs (fine-grained) (Pawlowski et al., 20 0 0). Interestingly,

the implementation between NFSv4 and NTFS ACLs is very simi-

lar and also caters for fine-grained permissions. The ability to cre-

ate fine-grained permissions significantly increases the complexity

of the access control implementation. For this reason, and due to

strong similarities between NFSv4 and NTFS, the rest of this sec-

tion will describe in more detail the access control implementation

of NTFS.

There are many tools available to assist with the examination of

NTFS permissions allocation (Microsoft, 20 06a; 20 06b). However,

there is one common weakness in that they all still require ex-

pert knowledge to analyse the output of the tools to determine if

there are any weaknesses. Previous work in the area of file system

permission analysis resulted in the development of a novel tool

for permissions administration that allows users to easily view file

system permissions for large directories (Parkinson & Crampton,

2013; Parkinson & Hardcastle, 2014). The tool provides features to

help the user identify vulnerabilities and view necessary informa-

tion to make better informed permission allocations. For example,

the reduction in reported permissions by not displaying inherited

permissions, and allowing the user to filter and show effective per-

mission for a specified user, are two prominent features.

Identifying anomalies or irregularities in system security is by

no means a new topic (Bhuyan, Bhattacharyya, & Kalita, 2014;

Lazarevic, Ertöz, Kumar, Ozgur, & Srivastava, 2003). For decades,

researchers have been developing techniques and tools to iden-

tify security anomalies. For example, recent works have covered

topics from the identification of anomalous user behaviour in so-

cial networks (Viswanath et al., 2014), anomalies in network traf-

fic (Catania, Bromberg, & Garino, 2012; Mahoney, 2003), anomaly

detection in wireless networks (Islam & Rahman, 2011; Xie, Han,

Tian, & Parvin, 2011), and the anomaly detection in power station

security (Ten, Hong, & Liu, 2011). All these studies generate good

results and demonstrate the potential of using machine learning

and statistics to identify anomalies. Recent research in the area

of file systems includes the construction of a Bayesian network

and neural network from the predetermined knowledge of the ma-

nipulation of file system artefacts for file system forensic analysis

(Khan, 2012). Research has been carried out into developing tools

Download English Version:

https://daneshyari.com/en/article/383167

Download Persian Version:

https://daneshyari.com/article/383167

Daneshyari.com

https://daneshyari.com/en/article/383167
https://daneshyari.com/article/383167
https://daneshyari.com

