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a b s t r a c t 

Learning Bayesian networks from scarce data is a major challenge in real-world applications where data 

are hard to acquire. Transfer learning techniques attempt to address this by leveraging data from dif- 

ferent but related problems. For example, it may be possible to exploit medical diagnosis data from a 

different country. A challenge with this approach is heterogeneous relatedness to the target, both within 

and across source networks. In this paper we introduce the Bayesian network parameter transfer learning 

(BNPTL) algorithm to reason about both network and fragment (sub-graph) relatedness. BNPTL addresses 

(i) how to find the most relevant source network and network fragments to transfer, and (ii) how to 

fuse source and target parameters in a robust way. In addition to improving target task performance, ex- 

plicit reasoning allows us to diagnose network and fragment relatedness across Bayesian networks, even 

if latent variables are present, or if their state space is heterogeneous. This is important in some applica- 

tions where relatedness itself is an output of interest. Experimental results demonstrate the superiority of 

BNPTL at various scarcities and source relevance levels compared to single task learning and other state- 

of-the-art parameter transfer methods. Moreover, we demonstrate successful application to real-world 

medical case studies. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Bayesian networks (hereafter referred to by the abbreviation 

BNs) have proven valuable in modeling uncertainty and support- 

ing decision making in practice ( Fenton & Neil, 2012; Pearl, 1988 ). 

However, in many applications it is hard to acquire sufficient ex- 

amples to learn BNs effectively from data. For example, in a small 

hospital or country there may be insufficient data to learn an effec- 

tive medical diagnosis network. However, directly applying a net- 

work learned in another domain may be inaccurate or impossible 

because the underlying tasks may have quantitative or qualitative 

differences (e.g., care procedures vary across hospitals and coun- 

tries). In this paper we investigate leveraging BNs in different but 

related domains to assist learning a target task with scarce data. 

This is an important capability in at least two distinct scenarios: 

(i) those where the source tasks are the same as the target, but 

have different specific statistics (e.g., due to different demographic 

statistics in another country), and (ii) those where the source tasks 

are related to the target in a piecewise way, (the target and source 
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tasks are not the same, but share common sub-graphs, e.g., two 

hospitals share a subset of procedures; or two diseases share a 

subset of symptoms). 

The proposed contribution falls under the topical area of trans- 

fer learning ( Pan & Yang, 2010; Torrey & Shavlik, 2009 ) (also 

known as domain adaptation), which aims to significantly reduce 

data requirements by leveraging data from related tasks. Transfer 

has been successfully applied in a variety of machine learning ar- 

eas for example, recommendations ( Pan, Xiang, & Yang, 2012 ), clas- 

sification ( Li, Jin, & Long, 2012; Ma, Luo, Zeng, & Chen, 2012 ) and 

natural language processing ( Collobert & Weston, 2008 ). Central 

challenges include computing when to transfer (transfer or not de- 

pending on relevance), from where (which of multiple sources of 

varying relevance) ( Eaton, desJardins, & Lane, 2008; Mihalkova & 

Mooney, 2009 ) and how (how to fuse source and target informa- 

tion). These are crucial to ensure that transfer is helpful, and avoid 

‘negative transfer’ risk ( Pan et al., 2012; Seah, Ong, & Tsang, 2013a ). 

Despite the popularity of transfer learning, limited work ( Luis, Su- 

car, & Morales, 2010; Niculescu-mizil & Caruana, 2007; Oyen & 

Lane, 2012 ) has been done on transfer learning of BNs. Outstand- 

ing challenges in BN transfer include dealing automatically with 

from where to transfer, transferring in the presence of latent vari- 

ables and transferring between networks with heterogeneous state 

spaces. In this paper we introduce the first framework that resolves 

these issues in a BN context, leveraging the structured nature of 
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BNs for piecewise transfer, so multiple sources of partial relevance 

and potentially heterogeneous state spaces can be exploited. 

In this paper we assume the target and source domain struc- 

tures are provided 

1 and concentrate on the challenges of learn- 

ing the target network parameters in the presence of latent vari- 

ables and from multiple sources of varying – continuous and/or 

piecewise – relevance. Importantly, we do not require that the 

source and target networks correspond structurally, or that node 

names are shared. Our novel solution involves splitting the tar- 

get and source BNs into fragments (sub-graphs) and then reason- 

ing explicitly about both network-level and fragment-level related- 

ness. Reasoning simultaneously about both is important, because 

pure fragment-level relatedness risks over-fitting if there are many 

sources. We achieve this via an Expectation Maximization (EM) 

style algorithm that alternates between (i) performing a Bayesian 

model comparison to infer per-fragment relatedness and (ii) up- 

dating a source network relatedness prior. This solves when and 

from where to transfer at both coarse and fine-grained level. Fi- 

nally, the actual transfer is performed per-fragment using Bayesian 

model averaging to robustly fuse the source and target fragments, 

addressing how and how much to transfer. In this way we can 

deal robustly with a variety of transfer scenarios including those 

where the source networks are: (i) highly relevant or totally irrel- 

evant, (ii) have the same or heterogeneous state spaces and (iii) 

uniform or piecewise (varying per sub-graph) relevance. Our ex- 

plicit network and fragment relatedness reasoning also provides a 

diagnostic of which networks/domains are similar, and which sub- 

graphs are common or distinct. This is itself an important output 

for applications where quantifying relatedness, and uncovering the 

source of heterogeneity between two domains is of interest (e.g., 

revealing differences in treatment statistics between hospitals). To 

evaluate our contribution, we conduct experiments on six standard 

networks from a BN repository, comparing against various single 

task baselines and prior transfer methods. Finally, we apply our 

method to transfer learning in two real-world medical networks. 

2. Related work 

Expert elicitation. An advantage of BNs is their interpretable na- 

ture means that experts can define variables, structure and param- 

eters in the absence of data. Nevertheless, learning BNs from data 

is of interest because there are many situations for which there is 

no available expert judgment, or where it may not be possible to 

elicit the conditional probability tables (CPTs). Studies have there- 

fore tried to bridge the gap between these two paradigms. Most 

typically, experts specify a semantically valid network structure, 

and CPTs are learned from data. Recently, expert specified quali- 

tative constraints on CPTs have been exploited to improve param- 

eter learning. This is done, for example, via establishing a con- 

strained optimization problem ( Altendorf, 2005; de Campos & Ji, 

2008; de Campos, Zeng, & Ji, 2009; Liao & Ji, 2009; Niculescu, 

Mitchell, & Rao, 2006 ) or auxiliary BNs ( Khan, Poupart, & Agosta, 

2011; Zhou, Fenton, & Neil, 2014a, 2014b ). In this study we exploit 

the ability of experts to easily specify a network structure and fo- 

cus on transfer to improve quantitative estimation of parameters. 

CPTs combination. When there is limited training data, researchers 

have attempted to construct CPTs from different relevant sources of 

information. Given a set of CPTs involving the same variables, con- 

ventional methods to aggregate them are linear aggregation (i.e., 

weighted sum) and logarithmic aggregation ( Chang & Chen, 1996; 

Chen, Chiu, & Tseng, 1996; Genest & Zidek, 1986 ). Based on this, 

1 This is easiest to elicit from experts, and is moreover required in many do- 

mains such as medicine where the structure must be semantically meaningful to 

be acceptable to end users. 

the work of ( Luis et al., 2010 ) introduced the DBLP (distance based 

linear pooling) and LoLP (local linear pooling) aggregation methods 

by considering the CPTs’ confidences and similarities learnt from 

the original datasets. This method highlighted the importance of 

measuring the weights/confidences of different CPTs. However, the 

method is a too simplistic heuristic: confidence values depend only 

on the CPT entry size and dataset size, without considering the fit 

to the target training data. 

Transfer learning. Transfer learning in general is now a well stud- 

ied area, with a good survey provided by Pan and Yang (2010) . Ex- 

tensive work has been done on transfer and domain adaptation for 

flat machine learning models, including unsupervised transfer and 

analysis of relatedness ( Duan, Tsang, Xu, & Chua, 2009; Eaton et al., 

2008; Seah et al., 2013a; Seah, Tsang, & Ong, 2013b ). However, 

these studies have generally not addressed one or more of the im- 

portant conditions that arise in the BN context addressed here, no- 

tably: transfer with heterogeneous state space, piece-wise transfer 

from multiple sources (a different subset of variables/dimensions 

in each source may be relevant), and scarce unlabeled target data 

(thus precluding conventional strategies that assume ample un- 

labeled target data, such as MMD ( Huang, Smola, Gretton, Borg- 

wardt, & Scholkopf, 2007; Seah et al., 2013b )). 

Transfer learning in BNs. In the context of transfer learning in BNs, 

the multi-task framework of Niculescu-mizil and Caruana (2007) 

considers structure transfer. However, it assumes that all sources 

are equally related and simply learns the parameters for each task 

independently. Kraisangka and Druzdzel (2014) construct BN pa- 

rameters from a set of regression models used in survival analysis. 

However, this method cannot be generalized to transfer between 

BNs. The transfer framework of ( Luis et al., 2010 ) covers a more 

similar parameter transfer problem to ours and proposes a method 

to fuse source and target data. However, the heuristic CPT fusion 

used assumes every source is both relevant and equally related. 

It is not robust to the possibility of irrelevant sources and does 

not systematically address when, from where, and how much to 

transfer (as shown by our experiments where this method signifi- 

cantly underperforms ours). The study ( Oyen & Lane, 2012 ) consid- 

ers multi-task structure learning, again with independently learned 

parameters. They investigate network/task-level relatedness, show- 

ing transfer performs poorly without knowledge of relatedness. 

However, they address this by using manually specified related- 

ness. Finally, a recent study ( Oates, Smith, Mukherjee, & Cussens, 

2014 ) improves this by automatically inferring the network/task- 

level relatedness. However, they do not consider information shar- 

ing of parameters. In contrast, we explicitly learn about both net- 

work and fragment-level relatedness from data. None of these 

prior studies cover transfer with latent variables or heterogeneous 

state spaces. 

A related area to BN transfer is transfer in Markov Logic Net- 

works (MLNs) ( Davis & Domingos, 2009; Mihalkova, Huynh, & 

Mooney, 2007; Mihalkova & Mooney, 2009 ). In contrast to these 

studies, our approach has the following benefits: We can exploit 

multiple source networks rather than exactly on each; we auto- 

matically quantify source relevance and are robust to some or all 

irrelevant sources (rather than assuming a single relevant source); 

these MLN studies use the transferred clauses directly rather than 

weighting the resulting transfer by estimated relevance. 

3. Model overview 

3.1. Notation and definitions 

In a BN parameter learning setting, a domain D = { V, G, D } 
consists of three components: variables V = { X 1 , X 2 , X 3 , . . . , X n } 
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